Меню
Поиск



рефераты скачать Шаруваті кристали рідкоземельних матеріалів

3. Впровадження водню В GaSe

Актуальність водневої тематики обумовлена перспективою створення ефективних акумуляторів водню, заснованих на оборотної сорбції водню в кристалічну решітку базового матеріалу. Більшість сучасних досліджень присвячено гідруванню водневих з’єднань.

Впровадження водню в GaSe проводили при тиску = 0,3 Па і температурі 600◦С. Контроль кристалічної структури вхідних і вихідних зразків GaSе проводили порошковим рентгенографічним методом на установці ДРОН - 2.0. Із дифрактограми вихідного й гідрованого зразків GaSe (рисунок 2.2) видно, що гідровані зразки зберігають структуру вихідного матеріалу. Збільшення періоду гратки гідрованого кристала GaSе в порівнянні з вихідним свідчить про впроваджень молекулярного водню. Проведено дослідження електричних й оптичних властивостей інтеркальованих монокристалів GaSе. Внаслідок інтеркалювання GaSе опір вздовж кристалографічної осі рс зменшився щодо вихідних зразків майже в 10 разів, що можна пояснити, припустивши утворення акцепторних рівнів у забороненій зоні GaSе при впровадженні водню в кристалічну решітку.


(а)

(б)

Рисунок.2.2 - Дифрактограми початкового (а) і гідрованого (б) кристалу GaSе.


Визначено спектральне положення екситонного максимуму Еекс для вихідних і інтеркальованих кристалів GaSе при 77 К. Для вимірів спектрів пропущення використали зразки товщиною 10-20 мкм. Дослідження проводили на спектрометричній установці, зібраної на базі модифікованого спектрометра ИКС-31 (при напрямку поширення світла перпендикулярно базової площини кристала). Установлено зсув енергетичного положення екситонного максимуму у високоенергетичу область на 2,7 меВ для інтеркальованих монокристалів у порівнянні з вихідними зразками GaSе (рисунок 2.3). Слід зазначити, що зсув.Еекс у високоенергетичу область спостерігалось також для монокристалічних зразків GaSе, інтеркальованих воднем електрохімічним методом.


Рисунок. 2.3 - Спектри обтичної площини початкового (1) і гідрованого (2) кристалів GaSе при 77 К


Зміщення енергетичного положення екситонного піку при 77 К можна пов’язати зі зміною ширини забороненої зони і енергії зв’язку екситона при гідруванні, зумовленої деформацією кристалічної гратки. Враховуючи специфіку кристалічної структури GaSе, слід відмітити, що вплив відповідних деформацій на перебудову енергетичного спектру GaSе можуть по різному змінюватися при інтеркаляції шаруватого кристалу. При збільшенні деформаційних напруг в шаруватих кристалах, зв’язаних з процесом впровадження водню в GaSе, значення пружних постійних, які характеризують зв’язок між атомами водню, в межах шарів збільшуються повільніше, ніж між шарами. Зміщення піку екситонного максимуму в область великих енергій на 2,7 меВ (рисунок 2.3) зумовлено зміною пружних постійних між шарами, що приводить до збільшення ширини забороненої зони Eg інтеркальованого кристалу GaSе і енергії зв’язку екситона Езв. Концентрація впровадженого водню в GaSе складала (0 < x £ 2).

4. Впровадження водню з газової фази під тиском


Монокристали GaSe, які використовувались в якості вихідних для інтеркаляції, вирощені методом Бріджмена (параметри елементарного осередку: а=0,37574(2) нм, з=1,59537(9) нм).

Інтеркаляційні фази НхGaSe (0<x<2,22) отримані при інтеркаляцією воднем з газової фази монокристалів селеніду галію об'ємно-манометричним методом в інтервалі температур 530-730 К при тисках 0,1 МПа і 4,2-5-4,7 МПа. Зразки попередньо активували у вакуумі (- 0,01 МПа) при 670 К на протязі 30 хв. Взаємодія водню з монокристалалом GaSe у зазначених інтервалах температур і тисків здійснювали до досягнення стану рівноваги, а також фіксували вміст водню при охолодженні системи до кімнатної температури. Кількість впровадженого водню визначали об'ємно-манометричним методом. Установлено, що в процесі інтеркаляції воднем монокристаллов GaSe при тисках 4,2-4,7 МПа з підвищенням температури (з 530 К до 730К) кількість впроваджуваного водню збільшується (НхGaSe, 0,32<х<0,60), (рис. 2.4 а). При охолодженні систем до кімнатної температури впровадження водню триває і його кількість (0,47<х<2,22) в інтеркаляційних фазах НхGaSe збільшується. Сумарна кількість інтеркальованого водню збільшується з ростом первісної температури інтеркаляції при високих тисках водню (4,2-4,7 МПа).

При загальному тиску 0,1 МПа й збільшенні температури кількість впроваджуваного водню зростає й досягає рівноважних станів (HxGaSe, 0,003<х<0,03), (рис. 2.4 б). Після охолодження до кімнатної температури зафіксоване збільшення кількості впровадженого водню, що є домінуючим внеском у сумарний вмісти водню в интеркаляційних фазах НхGaSe (0,13<х<0,24): зі зниженням температури інтеркаляції найбільше значення х=0,24 (Нх0,24 GaSe) досягається при охолодженні системи до кімнатної температури 530 K.


а

б

Рисунок. 2.4. Кінетичні залежності процесу інтеркаляції воднем GaSe при тиску 4,2-4,7 МПа (а): 1 - 530 К, 4,4 МПа; 2 - 630 К, 4,7 МПа; 3 - 670 К, 4,2 МПа; 4 - 730 К, 4,6 МПа, 0,1 МПа (б): 1 - 530 К, 2 - 630 К.


Таким чином, кінетичні залежності процесів інтеркаляції воднем монокристалів GaSe характеризируются встановленням рівноваги. Домінуючий вплив загального тиску водню на процес інтеркаляції пояснює розходження по впливі температури для низького (0,1 МПа) і високого (4,2-4,7 МПа) тисків. Для одержання НхGaSe з більшим вмістом водню необхідне використання щодо високих тисків, основне впровадження водню відбувається при охолодження систем до кімнатної температури.

З результатів рентгенівських досліджень слідує, що параметри елементарних осередків НхGaSe (0<х<2,22) а, с зменшуються зі збільшенням вмісту водню (рис. 2.5 а, 2.5 б). Обсяг елементарного осередку НхGaSe (0<х<2,22) з врахуванням довірчих інтервалів слабо зменшується в процесі інтеркаляції (рис. 2.5 в) при збереженні вихідного структурного типу. З аналізу відносних змін параметрів елементарного осередку а, для НхGaSe (0<х<2,22) треба, що:

1.параметр с зменшується в більшій мірі, чим а (приблизно в 2 рази

для максимального вмісту водню в інтеркалятах).

2.зменшення параметра с - домінуючий фактор у зменшенні обсягу елементарного осередку, співвідношення параметрів елементарних осередків с/а для НхGaSe (0<x<2,22) зростає з 8,179 до 8,183 зі збільшенням вмісту водню.


а

б

в

Рисунок 2.5 Залежності параметрів елементарного осередку НхGaSe (0<x<2,22) а (а), з (б) та її обсягу, V, (в) від змісту водню, х.


Зафіксовані концентраційні залежності параметрів й обсягу елементарного осередку НхGaSe (0<x<2,22) свідчать про значні відмінності природи процесів інтеркаляції воднем і металами шаруватих з'єднань. Зменшення параметрів елементарних осередків а, с НхGaSe, можливо, обумовлено перерозподілом електронної щільності між інтеркалированими атомами водню й шарами халькогенідної матриці (донорный характер інтеркаляції атомом водню), а також специфічними властивостями водню й можливими варіантами його локалізації в шаруватій структурі GaSe.

Відзначимо, що, як правило, при впровадженні металів у шаруваті структури, наприклад, дихалькогенидов ніобію, танталу, відбувається домінуюче збільшення параметра елементарного осередку с. Відомо, що GaSe має шарувату структуру, у якій зв'язок між атомами усередині шарів носить іонно-ковалентний характер, між шарами діє слабкий ван-дер-ваальсівський зв'язок, усередині шаруючи кожен атом Ga тетраэдрично оточений трьома атомами Se й одним атомом Ga. Гіпотетично, за аналогією з відомими процесами інтеркаляції металами дихалькогенидов d-перехідних металів, впровадження водню може відбуватися в тетраэдричні або октаєдричні порожнечі міжшарового простору. Крім того, не виключена інтеркаляція водню й у сусідні з ними порожнечі, а також безпосередньо у квазідвомірні шари, крім міжшарового простору. Можливість інтеркаляції в різні порожнечі шаруватої структури визначає максимальний вміст водню в інтеркальованих фазах при різних фізико-хімічних умовах.

Залежність питомої електропровідності інтеркаляційних фаз НхGaSe (0<х<2,22) від вмісту водню в напрямку, паралельному параметру елементарного осередку с, має немонотонний характер (рис. 2.6): в області 0<х<0,5 спостерігається ріст питомої електропровідності в міру збільшення вмісту впровадженого водню; у випадку х>0,5 має місце зворотний хід залежності.


Рисунок 2.6. Залежність питомої електропровідності від інтеркаляційних фаз НхGaSe (0<х<2,22) від змісту водню, х.


При поясненні отриманої залежності варто звернути увагу на дві обставини: можливість утворення нових рівнів у забороненій зоні GaSe, а також процес деформації його кристалічної структури. Можна думати, що при малих кількостях впровадженого водню (0<х<0,5) відбувається утворення нових рівнів у забороненій зоні GaSe, це супроводжується деформацією шаруватої структури, що істотно зменшить рухливість носіїв заряду

Рентгенівські дослідження виконували на автоматичному дифрактометрі. Спектри пропускання монокристалів GaSe і його интеркаляційних фаз НхGaSe (0<x<2,22) досліджені на спектрометричній установці, зібраної на базі модифікованого спектрометра ІЧС-31 (при напрямку поширення світла перпендикулярно базової площини кристала). Спектральний інтервал приладу, що дозволяє, у спектральній області 2,095 -2,14 ев становили 0,5 МеВ (дифракційна решітка - 1200 шт/мм). При вимірі спектрів пропущення використали зразки товщиною 10-20 мкм. Дослідження терморегулюємої кріостатної системи зразка типу "УТРЕКС-РТР" дозволило досліджувати спектри при температурі 77 К. Досліджено спектри пропускання кристалів GaSe й інтеркаляційних фаз HxGaSe (x=0,13; 0,24; 0,47; 0,56; 0,70; 2,22) в області екситонного поглинання. Залежність спектрального положення экситонного максимуму (п=1) при 77 К у інтеркаляційних фазах НхGaSe (0<x<2,22) від вмісту впровадженого водню, Еэкс(х), характеризується немонотонним поводженням (рис. 2.7): в області 0<х<0,7 відбувається збільшення функції Еекс(х), при подальшому збільшенні вмісту водню (0,7<х<2,22) Еекс майже не змінюється


Рисунок 2.7. Залежність енергетичного положення екситонного максимуму інтеркаляційних фаз НхGaSe (0<x<2,22), Еекс від вмісту водню, х, при температурі 77 К.


Таким чином, інтеркаляція воднем галію селеніду приводить до зрушення енергетичного положення экситонного максимуму при температурі 77 К у высокоэнергетическую область на 2,7 мэв для НхGaSe (х=0,7), (рис.2.7). На рис.2.8 представлені спектральні залежності оптичної щільності при температурі 77 До для монокристалла GaSe й НхGaSe.


Рисунок 2.8. Спектри оптичної щільності монокристалу GaSe й НхGaSe при температурі 77 К: 1 - GaSe, 2 - НхGaSe.


Пояснення залежності Еекс(х) при интеркаляции воднем GaSe можна дати на підставі подань про вплив деформацій (у цьому випадку, деформацій структури при її інтеркаляції воднем) на перебудову енергетичного спектра шаруватого кристала. Зсув максимуму экситонного піка в область більших енергій на 2,7 МеВ (рис. 2.8) в інтервалі 0<х<0,7 обумовлено зміною пружних постійних між шарами, що приводить до збільшення ширини забороненої зони Eg інтеркальованого кристала НхGaSe й енергії зв'язку екситону. У загальному випадку, зміна Eg відбувається як наслідок конкурентного внеску міжшарових деформацій і деформацій у межах шарів, які мають різні знаки деформаційного потенціалу.

5. Нанокристалічні порошки GaSe і InSe


Наявність слабкого ван-дер-ваальсового зв'язку між шарами в сполуках А3В6 визначає можливість одержання нанокристалічних порошків моноселенідів галію та індію. Відомим способом отримання нанопорошків шаруватих сполук (зокрема дихалькогенідів перехідних матеріалів MoS2, WSe2, NdSe2) є диспергування матеріалів в рідких середовищах під дією ультразвукових коливань. Тому для одержання нанорозмірних матеріалів GaSe, попередньо подрібнених в ступці, використано метод ультразвукової дії. Диспергування вихідних порошків розміром ~ 70 мкм проводилось на ультразвуковій установці з питомою акустичною потужністю 0,5-10 Вт/см2 в рідкому середовищі (вода, спирт, ацетон) з концентрацією порошку 1-5% мас. протягом 30 хв. Під дією ультразвукових коливань в рідкому середовищі створювали кавітаційні режими. Внаслідок цього виникали розклинюючі напруження, що призводило до розщеплення мікрочастинок по площинах спайності (001) і утворення нанопорошків GaSе.

Регулювання розмірів наночастинок здійснюється за рахунок використання різних за природою рідких середовищ, що призводить до змін в кінетиці як процесів інтеркаляції, так і подальшого диспергування.

Для встановлення фактів диспергування до нанокристалічних розмірів використовується метод розширення рентгенівських ліній з урахуванням впливу можливих спотворень кристалічної гратки внаслідок відхилень від рівноваги; гомогенність за структурою, складом; контролюють також рентгенофазовим аналізом, рентгенівським локальним мікроаналізом.

Відомі такі фізико-хімічних властивості нанопорошків:

- середні розміри наночастинок змінюються в відносно широких межах при використанні різних рідких середовищ;

- нанокристалічні порошки є гомогенними за складом та структурою при активації останньої;

- ефективне диспергування в кавітаційних режимах здійснюється на протязі малих проміжків часу;

- вказані режими можуть бути використані для диспергування значних кількостей вихідних порошків;

- технологічні операції, за якими проводиться диспергування, є простими;

- використання в якості рідких середовищ індустріальних рідких масел дозволяє суттєво поліпшити їх антифрикційні характеристики внаслідок наявності в них домішок нанокристалічних дихалькогенідів та їх інтеркалятів.

Розміри наночасток вздовж кристалографічного напрямку [001] визначали рентгенографічно по уширенню відбивання 004 GaSе зі співвідношення

 де:


- фізичне розширення лініїобумовлене малими розмірами частинок диспергованого матеріалу,

b- напівширина лінії 004 вихідного матеріалу GaSе,

В - напівширина даної лінії диспергованих матеріалів. Виміри проводилися на установці ДРОН-3. Експериментально визначені напівширини лінії 004 GaSе та диспергованих матеріалів, а також одержані розміри наночасток приведені в таблиці 2.2


Таблиця 2.2

Матеріали

Напівширина

лінії 004, рад

Розширення

Р, рад

Розміри наночастинок

Ь, нм

GaSе

2,3-102



GaSе, диспергований в ацетоні

2,44-102

8,15-103

18

GaSе,

диспергований у воді

2,59-102

1,19-102

12,5

GaSе,

диспергований у спирті

2,76-102

1,53-102

9,7


Як видно з приведених даних, диспергування в спирті приводить до утворення наночасток найменших розмірів.

Вивчався вплив інтеркаляції воднем на властивості порошкоподібних і шаруватих сполук А, В. Зразки для інтеркаляції порошкоподібного GaSе отримувалися пресуванням порошку в таблетки 0 9 мм та товщиною ~ 1 мм. Пресування проводилося під тиском 250 кгс/см2. Потім з таблетки лезом вирізався паралелепіпедоподібний зразок необхідних розмірів.


6. Інтеркаляція воднем нанопорошків.деінтеркаляція


Інтеркаляцію водню проводили електрохімічним шляхом з водного розчину сірчаної кислоти (1М H2SO4); катод - монокристал масою 2-4 мг з типовими розмірами 4x 5x 0,02 мм3, анод - платинова пластина. Величина струму становила 50 - 80 мкА при різниці потенціалів між електродами 1,65 В, що поступово збільшувалась до 2 В. На заключному етапі величину струму різко підвищували до 50 - 80 мА, при цьому різниця потенціалів збільшувалась до З В, Кристали вилучали з кислотного розчину та додавали дистильованої води, що призводило, за спостеріганнями авторів, до значного їх зростання в об'ємі (приблизно в 30 разів). Одержану суспензію обробляли також ультразвуковою дією на протязі декількох секунд (технологічні параметри не вказано). За результатами електронної мікроскопії розміри отриманих часток становили до 200 нм.

Недоліками способу є слідуюче:

- використання монокристалів як вихідних зразків, що потребує значних затрат часу та складних технологічних операцій порівняно з реалізацією диспергування;

- зазначений процес диспергування є трьохстадійним і потребує відносно багато часу;

- диспергування за зазначених умов є, по суті, некерованим процесом;

- використані наважки монокристалів є надто малими, що значно обмежує можливості атестації та дослідження властивостей диспергованих сполук;

- відсутні дані про дію технологічних факторів та домінуючий вплив вказаних стадій процесу на середні розміри частинок, їх розподіл, склад та структуру;

- можливість неконтрольованої хімічної взаємодії монокристалів з кислотним розчином-електролітом, що призводить до не обернених змін в складі та структурі вихідних сполук;

- кінцеві продукти диспергування можуть бути інтеркальовані малими кількостями водню та води.

Інтеркаляція проводилася за допомогою потенціостату П - 5827М в гальваностатичному режимі методом “тягнучого” електричного поля. В процесі інтеркаляції використовувалася комірка ЯСЕ - 2, виконана з хімічно та термічно стійкого скла. Вона є трьохелектродною системою, що включає електрод порівняння, робочий та допоміжний електроди. Допоміжний та порівняльний електроди використовувався платиновий провід. Робочий електрод був притискним: у верхній частині зразок затискався між двома мідними пластинами, до яких підводився електричний струм. Потім зразок приводився в контакт з електролітом. Через комірку (система робочий електрод - електроліт - протиелектрод) пропускався електричний струм потрібної величини, що приводило до впровадження водню в GaSе. Як електроліт використовувався одно-нормальний водний розчин соляної кислоти. Для приготування розчину використовувалась бідистильована вода та концентрована соляна кислота класу ХЧ.

Концентрація впровадженого водню визначалася по кількості електрики, яка пройшла через комірку, тобто контрольованими параметрами в процесі інтеркаляції були густина струму та тривалість процесу. При інтеркаляції зразків GaSе використовувався “м'який” режим, при якому напруженість електричного поля та густина електричного струму становили: Е = 30 - 50 В/см та мА/см2, відповідно.

Вміст впровадженого водню в нанопорошки складав H6GaSe.

Процес термостимульованої деінтеркаляції водню із сполуки впровадження НхInSe вивчалася за допомогою термічної обробки при температурі 383 К при одночасній відкачці протягом 3-9 годин. Регістрація ступені деінтеркаляції після термічної обробки проводилась шляхом порівняння "еталонної" (для термічно необробленого зразка) концентраційної залежності енергетичного положення екситонного максимуму Еекс(х) при 77 К з спектрами термооброблених зразків, тобто тих зразків які ми термостимульовано продеінтеркалювали, зразків НхInSe (0,02£ x £ 2,0).На рисунку представлена концентраційна залежність оборотності впровадження водню N(х) для НхInSe (тривалість термічної обробки 6 годин)


 

Рисунок.2.9 Концентраційна залежність оборотності впровадження водню для сполуки НхInSe


З рисунка 2.9 видно що проходить поступове збільшення деінтеркальваного водню від 63 % (х = 0,02) до 78 % (х = 2,0).

7. Техніка безпеки


При виконанні всіх видів робіт слід дотримувати вимоги, викладені в Правилах технічної експлуатації і безпеки обслуговування електроустановок промислових підприємств. Як правило, роботи, які проводяться в лабораторіях і на установках, пов’язані з небезпекою не тільки враженням електричним струмом, але і з небезпекою отруєнь. Тому вимагають кожноденної уваги питання технічної безпеки, сангігієни, пожежної профілактики.

При проведенні експлуатаційних робіт були прийняті до відома слідуючі особливості, пов’язані з технікою безпеки:

- роботи з електровимірювальними приладами;

- роботи з зрідженими газами;

- висновки (загальні вимоги).       

Робота з електровимірювальними приладами

Щоб запобігти травматизму різного роду при роботі з електровимірювальними приладами і високою напругою, необхідно дотримуватись наступних правил техніки безпеки:

1.                На вимикачах і рубильниках повинні бути написи, які вказують, до якого приладу вони відносяться.

2.                На дротах, комутаційних апаратах повинні бути ясно вказані положення “включено”, “виключено”, які можуть підтверджуватись сигнальними лампочками.

3.                Для забезпечення безпеки людей повинні заземлюватись механічні частини електроустановок і корпуса електрообладнання, які можуть опинитися під напругою внаслідок порушення ізоляції.

Заземлення електроустановок необхідне в наступних випадках:

-                   при напрузі 500 В і вище змінного і постійного струму в усіх випадках;

-                   при напрузі вище 36 В змінного і 110 В постійного струму в приміщеннях з підвищеною небезпекою;

-                   при всіх напругах змінного і постійного струму в усіх вибухонебезпечних приміщеннях.

4.                Після закінчення роботи необхідно відключити електроенергію, прибрати робоче місце, закрити воду, вентиляцію.

Робота з зрідженими газами

При роботі з зрідженими газами завжди треба мати на увазі, що ємності з зрідженими газами повинні бути закриті ковпачками, які легко пропускають газ, що випаровується з посудини. Це необхідно, щоб запобігти створенню надлишкового тиску в посудині внаслідок чого може виникнути його руйнування.

Необхідно пам’ятати, що попадання зріджених газів на відкриті ділянки тіла викликає сильні опіки.

Загальні вимоги

Особи, що працюють з хімічними речовинами повинні знати:

- властивості хімічних речовин, їх токсичність і вибухонебезпечність;

- заборонено зберігання будь-яких реактивів без найменувань;

- небезпечні моменти при проведенні робіт і способи їх попередження;

- міри першої допомоги при опіках, поразках електричним струмом, отруєннях;

- протипожежні інструкції, протипожежний інвентар і користування ним.

Особи, що працюють з шкідливими речовинами, повинні користуватись встановленим спецодягом.

Селен є менш токсичним. Гранично - допустима концентрація селену у повітрі складає 0,02 мг/см3. Сполуки селену мають сильні токсичні властивості. В організм селен може попасти через дихальні шляхи, шкіру, шлунок. Міри застереження при роботі з селеном – герметизація сполук і обережне поводження з ними. Процес одержання селену повинен бути повністю автоматизований і абсолютно герметичний.


Висновки


1 Розроблена методика інтеркалювання шаруватих кристалів GaSe і InSe воднем.

2 Інтеркаляція воднем приводить до зміни параметрів кристалічної гратки і до зсуву екситонних спектрів GaSe у високоенергетичну область на 2,7 МеВ.

3 Методом диспергування отримані нанопорошки шаруватих кристалів GaSe і InSe. Диспергування GaSe в спирті приводить до утворення наночасток з найменьшим розміром, який складає 10 нм.

4 Диспергування шаруватих кристалів приводить до збільшення вмісту водню, який складає H6GaSe. Для монокристалічного GaSe H2GaSe.



Література


1.     Водородные свойства получения, хранения, транспортирования, применения. Справочник / Гамбург Д.Ю., Семенов В.П., Дубовкин Н.Ф., Смирнова Л.Н.: под ред. Гамбурга Д.Ю., Дубовкина Н.Ф. - М.: Химия - 1989. - 672 с.

2.     Тарасов Б.П., Гольдшлегер Н.Ф., Моравский А.П. Водородосодержащие соединения углеродных наноструктур: синтез и свойства. Успехи химии. - 2001,- 70, № 2, - С. 149 - 166.

3.     Трефилов Б.П., Щур Д.В., Тарасов Б.П., Шульга Ю.М., Черногоренко А.В., Пищук В.К., Зачинайченко С.Ю. Фуллерены - основа материалов будущего. Киев: ИНМ НАНУ, 2001,-148 с.

4.     Осипьян Ю.А., Кведер В.В. Фуллерены - новые вещества для современной техники. Материаловедение. - 1997. - №1, С. 2 - 6.

5.     Zhirko Yu.I., Zharkov I.P., Kovalyk Z.D., Pylja M.M., Boledzyuk V.B. On the Wannier exiton 2 lokalization in hidrogen intercalated InSe and GaSe layered crystal. Semikonductor Phys., Quantum Elektronics. 2004, vol 7, p. 715 - 720.

6.     Ковалюк З.Д., Пирля М.М., Боледзюк В.Б. Вплив водню на оптичні властивості GaSe. Журнал фізичних досліджень, 2002, Т.6, №2, С. 185 - 187.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.