Dj =Q/C=Qå(1/Ci)
i=1
Откуда
n
1/C=å1/Ci
i=1
2) Параллельное соед. - соед. при котор. соедин. между собой
обкладки одного знака.
n
С=åCi
i=1
У параллел. соед. конденсоторов разность потенциалов на обкладках конденсаторов
одинакова и равна j
а -j b. Если емкости конденсаторов С1 ,С2,
..., С3 то их заряды равны Q1=C1(j а -j b)
Q2=C2(j а -j b)
а заряд батареи конденсаторов
n
Q=åQi=(C1+C2+...+Cn)´
i=1
´(j а -j b)
Полная емкость батареи
n
С=Q/(j а -j b)=
åCi
i=1
Энергия заряженного проводника и конденсатора.
Рассм. уедин. проводник произв. формы. Проведем зарядку этого проводника
, при этом подсчитаем работу внеш. сил.
Пусть при перенесении dq из ¥ ,
проводник приобрел потенциал j . Элементар.
работа dA=j dq.
Допустим зарядили до Q .
С=q/j j=q/C
Вся работа совершаемая при зарядке проводника до Q равна.
1) A=Q2/2C 2) A=Cj2/2
3) A=Qj/2
В окружающем пространстве после зарядки проводника возникло
электростатическое поле, значит работа при зарядке проводника расходуется на
создание поля. Значит работа переходит полностью в энергию электростатич. поля.
Wэл=1) или 2) или 3)
Из 1) , 2) ,3) не следует ответа что энерг. Wn локализована в
самом поле поскольку в формуле стоят параметры заряж. проводника.
Конденсатор.
Рассм. зарядку конденсатора состоящего из двух обкладок
Первый путь - dq перенос. из ¥ на
одну из обкладок , тогда на второй обкладке возникнет -.
Второй путь - элементарн. заряд dq перенести из одной обкладки на
вторую.
Независимо от способа формулы 1) , 2) , 3) справедливы (только j изменяется на Dj).
Энергия электростатического поля.
Объемная плотность энергии.
Носителем энергии явл. само поле.
Для подтверждения этой идеи возьмем формулу 1).
Wэл=Q2/2C применим ее к плоск. конденсатору.
(параметры известны).
Wэл=s2S2d/2ee0S=(s2/2ee0)´Sd=
=(ee0s2/2(ee0)2)´V
1) Wэл=(ee0E2/2)´V
Из 1) следует что носителем энергии явл. поле с напряженностью Е.
Из 1) следует что все стоящее перед объемом - это объемная плотность
энерг. электростатического поля.
2) wэл=(ee0E2/2)
2') wэл=DE/2
В физике доказывается что 2) и 2') можно применять и для неоднородного
поля, для котор. полная энерг. может быть вычесленна по формуле
3) Wэл=òwэлdV
v
Лекция.
Диэлектрики в эл. поле. Поляризация диэлектриков.
§1 Проводники и диэлектрики. сущность явл. поляризации.
У проводников электроны могут свободно перемещаться по всей толще
образца.
явл. эле-
ктростатич
индукции
Диэлектрики - вещества плохо или совсем непроводящие эл. ток.
В диэлектрике свободные заряды отсутствуют. У диэлектрика очень большое
сопротивление.
Во внешнем поле у диэлектриков происходят очень существенные изменения.
Заряды находящиеся в атоме во внешнем поле Е0 смещаются или
пытаются сместиться. Диэлектрик во внеш. эл. поле поляризуется.
поляризуется
При поляризации диэлектрика Е¹0.
У диэлектрика во внеш. эл. поле на поверхности образца появл. связнные
некомпенсированные поляризованные заряды.
Явл. поляризации заключ. в появлении электрич. поля Е при внесении во
внеш. поле Е0 появл. связанных поверхностных зар. и появлении в
толще образца , в каждой единице объема дипольного момента.
Диполь во внеш. эл поле.
Рассм. электрический диполь образованный зарядом q.
_
Электрич. момент p=ql , где l- плечо
диполя. Вносим диполь во внеш. поле.
_
Е=const
½+q½=½-q½=q
Запишем силы действующие на заряд.
_ _
На +q - F+ ,
на -q - F_
_ _ _
½F+½=½F_½=½F½=F
На электрич. момент действ. пара сил , при этом возник вращающий момент
М.
М=Fd=Flsina=Eqlsina=
=Epsina
d -
плечо силы
_
M=[P,E]
-вращ. момент
(сколяр. произв.)
В однородн. эл поле электрический диполь поворачивается до тех пор пока
эл. момент не станет направлен по внеш.
_ _
полю PE т.е. эл. диполь в полож.
устойчивого равновеия.
В неоднородном эл. поле диполь наряду с поворотом испытывает
поступательное движ. в область неоднородного поля.
Типы диэлектриков.
Виды (механизм) поляризации диэлектриков.
В зависимости от структуры молекул различ. два типа диэлектриков поляр.
и неполяр.
неполяр. полярные
O2
, H2 , CO ... HCl ,...,CO2
Симметрич. Не симметри-
структура ма- чная структу-
лекул. ра.
Без внеш. поля.
(Е0=0)
В О центры Центры тяж.
тяж. (+) и (-) не совпадают
совпадают.
_
_
Pi=0
Pi¹0
åPi=0
åPi=0
i i
В силу хао-
тич. движ.
диполей.
У неполяр.
диэл. в отсу-
тств. внеш. по-
ля малекулы не
имеют собств.
эл.моментов.
(диполей нет)
Во внеш. поле
_
Pi¹0
Ориентация
_ диполи по
Pi¹0
внеш. пол. Е0
åPi¹0
åPi¹0
i i
диполи
Поляризация в завис. от вида
механизма назв.
Диформацион- Ориентаци-
ная (электрон- онная поля-
ная). ризация.
Независимо от вида поляризации у любого поляризованного диэлектрика
появляется в эл. поле суммарный электрический дипольный момент.
Поляризованность.
Вектор поляризованности.
Связь его с поверхностными зарядами.
Явл. поляризации описывается с помощью важной характеристики поляризованностью
или вектора
_
поляризации Ю.
Поляризованностью диэлектрика назв. физ. вел.численно равную суммарному
электрическому (дипольному) моменту молекул заключенных в единице объема.
_
1) Ю=åPi/DV
i
в числителе суммарный момент всего образца , DV - объем всего образца.
В Си[Ю]=Кл/м2
_ _
2)
Ю=жe0Е
ж -диэлектрическая
восприимчевость вещества.
ж>0 ж>1
Из 2) ж -const
Покажем что вектор поляризации равен (для точек взятых внутри
диэлектрика).
Ю= s '
Пусть во внеш. поле Е0 нах. массивный образец.
DV=Sl
Независимо от способа поляриз. справа будет +s ' , справа -s '.
_
åPi =ql=Ss 'l=
i
Ю=s 'Sl/Sl =s '
Эл. поле внутри диэлектрика.
Вектор эл. смещения.
Рассм. поляризацию однородного , изотропного диэлектрика (ж -const)
внесенного во внеш. однородное поле поле Е0 образованное плоским конденс.
На образце появятся поверхностные связанные заряды.
+ s ' , - s '. _
Связ заряды созд. поле Е'
_
напр противополож. Е0.
_ _ _
Е=Е0+Е' Е= Е0+Е'
Е=Е0 - s '/e0=E0
- жe0E/e0
E+жE=E0
(1+ж)= E0
1+ж=e
E=E0/e - напряженность
поля в диэлектрике внесенного во внеш. поле Е0.
Напряженность поля в диэлектр. Уменьшется в e раз при условии что s на обкладках конденс. остаются постоянными.
Если диэлектрик вносится в плоский конденс. подключенный к источнику
напряжения , напряженность остается =Е0.
eЕ=Е0
ee0Е=e0Е0 D0=e0Е0
D=D0=s
В таком случае эл. смещение одинаково в вакууме и в диэл.
Лекция.
s =const
E=Е0/e0
E созд. всеми видами зарядов как свободными так и
связанными.
D = D0
диэл в возд
U=const
s
=const
Е0=E
D=eD0
Связь между связанными и свободными и свободными
зарядами (s и s'
).
Связь между s и s' устанавл.на
основании выраж. для напряж. поля.
Е= Е0 - Е'
Е0/e=Е0 - Е'
s/e0=s/e0- s '/e0
s/e= s - s'
s'=(e - 1/e)´s
_ _ _
Связь между Е , D , Ю.
_ _
D= e0eE=(1+ж)´e0E=
_ _
=e0E+жe0E0
_ _
D=e0E+Ю - связь
Теор. Гаусса при наличии диэлектриков.
Для воздуха и для вакуума две равные теор. Гаусса.
1) ѓDnds=åqi
S i
2) òe0Ends=åqi
i
1)=2)
При наличии деэлектриков значимость 1) и 2) различна. В формуле 2) при
наличии диэлектрика в прав. часть надо добавить алгебраич. сумму всех связанных
зарядов 2)'
òe0Ends=åqi+
i
+åqi'
i
Вел. связанных зарядов зависет от Еn.
Поток вектора эл. смещения сквозь произвол. замкн поверх. равен
алгебраич. сумме всех свобод. зарядов заключ. внутри поверхности.
ѓDnds=åqi -
теор. Гаусса
S
i при наличии диэлектрика.
Явление на границе двух диэлектриков .
Граничные условия.
Закон преломления линий поля.
До сих пор мы рассм. диэл. вносимый в поле так что поверхность его
совпадала с эквипотонц. поверх. , а линии
_ _
Е и D были ^ поверхности.
_ _
Каково направление Е и D
_ _
если Е и D не ^ эквипотонц.
поверх.
Для построения картины поля внитри диэлектрика нужно знать граничные
условия.
Граничные условия для нормальных составляющих
_ _
Е и D.
Рассм. границу раздела двух диэлектриков.
Псть у 1) - e1
2) - e2
e2 > e1
Пусть на границе раздела
_
двух диэлектрикриков D направлен под углом a.
_ _
Расскладываем D1 и D2 на состовляющие нормальную к поверхности и
танген-циальную.
_ _ _
D1=D1n+D1t
_ _ _
D2=D2n+D2 t
Для применен. Теор. Гаусса надо построить замен. поверх.
Нухно выбрать цилиндрич поверхн.
Найдем поток вектора эл. смещения через замкн. поверх.
ФD=D2nDS - D1nDS
Найдем алгебр. сумму зар. попавших внутрь.
D2nDS´D1nDS=0
DS¹0
1) D2n=D1n
Cогласно связи.
e2e0E2n= e1e0E1n
2)
E1n/E2n = e2/e1
2) - втор. гранич. усл. показ. каково повидение Е на грпнице: En на границе раздела двух диэл. изменяется скачком.
Граничные условия для тангенц. состовляющей.
Для получ. этих гранич. усл. воспольз. теор.о циркуляции вектора
напряженности электрич поля.
ѓЕldl=0
L
Нужно построить четеж для
_
Е аналогично рис 1.
_ _ _ _
(1) - Е1® Е1=E1n+E1t
_ _ _ _
(2)
- Е2® Е2=E2n+E2t
Для применения теор. о циркул. нужно выбрать замкн. контур.
В качестве замкнутого контура выбираем прямоугольник стороны котор. ½½
границе раздела , высота h®0.
АВ=CD=а
Направление обхода по часовой стрелке.
ѓЕldl=0 L=ABCD
L
В каждой точке на расст AB E1t ½½
этому участку.
Поэтому циркуляция E1t на AB равна
B D
ѓЕldl=E1tòdl
- E2tòdl=0
L
A C
E1ta - E2ta=0
a¹0
3)
E1t=E2t
У вектора напряженности поля при переходе через границу раздела двух
диэлектриков не меняется тангенциальная состовля-ющая.
D1t/e1e0=D2t/e2e0
Используя 3) и связь между
_ _
D и E получим:
4)
D1t/e1e0=D2t/e2e0 -
4-ое условие .
На границе раздела двух диэлектриков тангенц.
_
сoставл. D изменися.
1,2,3,4
- условия позволяют правельно
построить картину линий поля.
Закон преломления линий поля.
tga2=D2 t /D2n tda1=D1 t /D1n
tga2/tga1= D2t ´D1n/ D2n´D1t = =D2 t /D1 t = e2/e1
5)
tga2/tga1=e2/e1
- зак. преломления линий поля.
Угол больше в той среде где e больше.
Из 5) следует гуще линии поля располож. В диэлектрике где e больше.
e2< e1
Построить картину линий поля.
Активные диэлектрики.
(диэлектрики с особыми поляризационными свойства-ми.)
Мы рассматривали поляриза-цию однородных , изотроп-ных диэлектриков.
_ _
Ю=жe0Е
ж=const
При Е=0 у большенства диэл. Ю
=0. (поляризация исчезает)
Сущ. диэлектрики с нелинейной зависемостью.
_ _
Ю от Е.
_ _
Ю ¹жe0Е
2)
Ю = f(E)
Это первый тип диэл. с особыми свойствами предста-вляет собой класс
сигме-нтодиэлектриков.
У сигментодиэлектриков 2) представляет собой петлю гистерезиса.
Петля гистерезиса 1,2,3,4,5,6,1
Область 0,1 - область первич-
ной поляризации.
_ _
При уменьшении Е вектор Ю
убывоет по кривой 1,2,3.
_
При Е=0 в диэлектрике сох-
раняется остаточная поляри-
_
зация Ю 0.
_
Ю =0 в т. 3 т.е. при внеш. поле обратного направления.
Лекция.
Постоянный ток.
Проводимость металлов и газов.
Электрический ток - направленное движение зарядов.
Носители заряда - заряды создающие ток.
В электролитах - ионы
металлах - электроны
газах - ионы и электроны.
Проходимостью тока - назв. прохождение зарядов через вещество.
Типы проводимости - ионная , электронная , смешанная.
Независимо от вида проводимости для тока приняты следующие
характеристики:
1)
I - сила тока.
2)
j - плотность тока.
Сила тока - физ. вел. численно равная заряду переносимому через поперечное
сечение проводника за 1 с. (скалярная вел.)
[ I
]=A
(1)
I=q/A
Страницы: 1, 2, 3, 4
|