Меню
Поиск



рефераты скачать Физика: механика и термодинамика

   Определите по графику 1 значение  момента силы трения и сравните полученный результат с  Мтр, измеренном ранее в задании 1.

2. Угловой коэффициент наклона графика 1 равен моменту инерции маятника в данной его конфигурации: J=DM/De.    

    Определите момент инерции системы по графику  и сравните с его значением, рассчитанным по формуле (10) для этой конфигурации. Если между ними есть различие, то объясните причину и укажите  границу погрешности измерений.

3. Угловой коэффициент наклона графика 2 равен моменту приложенных к маятнику сил: .

    Определите по графику момент сил, приложенных к маятнику, и сравните его со значением, рассчитанным по формуле (12.)


Контрольные вопросы и упражнения

1. Назовите основные характеристики вращательного движения, укажите их обозначения, дайте им определения и назовите единицы измерения. Выделите из них векторные.

2. Запишите уравнения, свзывающие угловую и линейную скорости, угловое и линейное ускорение, период и частоту.

3. Дайте определение момента инерции материальной точки. Назовите единицы измерения момента инерции.

4. Дайте определение момента силы, укажите его направление и назовите единицы измерения.

5. Что исследовалось в данной работе?  Из каких заданий состоит вся работа? Как выполняется задание 1?  Задание 2?  Задание 3?

6. Каковы погрешности использованной в работе экспериментальной установки?

7. Какие выводы сделаны вами на основании анализа экспериментальных результатов?


8. Выполните дополнительно следующие задания контрольного характера.


8.1. Момент силы трения:             По результатам задания 1

                                                         По графику 1


8.2. Момент инерции системы:    По результатам вычислений

                                                         По графику 1


8.3. Момент силы:                          По результатам вычислений

                                                         По графику 2




Отчет по лабораторной работе № 2

«Изучение  вращательного  движения»

выполненной студент . . . . .  курса,  …...... Ф. И. ...........

группа ….                                                                                «…»…………. 200...г.

Цель работы: .............................................................................................................................


Задание 1.  Определение момента силы трения

m0 =       …. кг,   R =     … м,    Мтр =               Н×м

Задание 2.  Проверка основного уравнения динамики вращательного движения

2.1. Зависимость углового ускорения от момента действующих сил при J = const

                                                                 Таблица 1

r = …м

J = …кг×м 2

h= … м

t1,

c

t2 ,

c

t3 ,

c

,

c

a,

м/с2

Mп ,

Н×м

e,

с-1

R =… м             m =… кг         

R =… м             m =… кг

R =… м             m =… кг

R =… м             m =… кг

R =… м             m =… кг

R =… м             m =… кг

                                          

 





Вывод:…………………………………………………………………………………………

2.2. Зависимость углового ускорения от момента инерции при M = const

                                                                 Таблица 2

h = … м

m = …кг

R = … м

М = …Н×м

t1,

c

t2,

c

t3,

c

c

a,

м/с2

e,

с-1

 

J,,

 кгм2

J-1,,

 (кгм2)-1

r =… м

r =… м

r =… м

r =… м

r =… м


r =… м


                                                                                        



Вывод: ………………………………………………………………………………………………

Дополнительная проверка достоверности результатов

      

Момент силы трения:            По результатам задания 1                    Мтр=

                                                  По графику 1                                         Мтр= 

Комментарии:



Момент инерции системы:    По результатам вычислений                J =

                                                  По графику 1                                          J =

Комментарии:



Момент силы:                          По результатам вычислений                 М =   

                                                   По графику 2                                          М = 

Комментарии:       


Лабораторная работа №3

ИЗУЧЕНИЕ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ


Цель работы:   

Углубить  знания  по теории гармонических колебаний; освоить методику экспериментальных наблюдений и проверить законы незатухающих гармонических колебаний на примере математического, крутильного или физического маятников; закрепить навыки обработки, оформления и представления экспериментальных результатов.


Часть I. Математический маятник

1.1. Теоретическая часть

 Маятник – тело, совершающее колебательное движение под действием упругой или подобной ей, «квазиупругой» силы. Простейший маятник – массивный груз на подвесе, находящийся в поле силы тяжести. Если подвес нерастяжим, размеры груза пренебрежимо малы по сравнению с длиной подвеса и масса нити пренебрежимо мала по сравнению с массой груза, то груз можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса О. Такой маятник называется математическим.

   На груз действуют силы: натяжения нити  и тяжести , которые в положении равновесия (точка С, рис.1) компенсируют друг друга . Для возбуждения колебаний маятник выводят из положения равновесия, например, в точку С`.  Теперь на него действует сила , направленная к положению равновесия и пропорциональная смещению,  маятник обладает избыточной потенциальной энергией mgh по отношению к положению равновесия. Эта энергия обуславливает колебание, происходящее по дуге окружности и описываемое основным уравнением динамики вращательного движения

                           

   ,                              (1)

где - результирующий вращающий момент, модуль этого вектора равен ;  - угловое ускорение, J = ml2 – момент инерции груза относительно оси ОО¢, проходящей через точку подвеса О, перпендикулярно плоскости колебаний (плоскости чертежа).   

 Дифференциальное уравнение колебаний математического маятника в отсутствии сил сопротивления  имеет вид

   ,                                                (2)

откуда получаем

                                                            (3)

   Для достаточно малых углов (j<5-6°) sinj»j (в радианах), тогда

       ,                                                          (4)

где .

   Уравнение (4) представляет собой однородное дифференциальное уравнение второго порядка. Его решением является функция

     ,                                                     (5)

где j0амплитуда, a0 – начальная фаза. В этом можно убедиться, подставив (5) в (4).

   Из (5) следует, что угол отклонения маятника из положения равновесия изменяется по гармоническому закону. Величина   является циклической частотой собственных колебаний маятника,  тогда величина

                                                         (6)

- период колебаний математического маятника.1

  

     Из выражения (6) следуют три закона колебаний математического маятника:

                При малых углах отклонения (sinj»j  или  j<60) и в отсутствие сторонних сил

1. период колебаний не зависит от массы маятника; 

2. период колебаний не зависит от амплитуды;

3. период колебаний определяется формулой .

      Две из этих закономерностей подлежат проверке в данной работе.

1.2. Экспериментальная часть

   Используемый в работе маятник представляет собой модель математического маятника - груз, подвешенный на тонкой нити.  В работе используются не менее трех  грузов, размеры которых значительно меньше длины нити (примерно как 1:50) и которые существенно отличаются по массе (примерно как 1:2:4),  но близки по форме и размерам, чтобы  силы сопротивления, возникающие при их движении, были примерно одинаковыми.  Следует помнить, что длина маятника – это расстояние от точки подвеса до центра массы груза.   Начальный угол отклонения маятника из положения равновесия не следует брать больше, чем  10-15°.


Задание 1. Проверка влияния массы математического

маятника на период его колебаний

1. Закрепив тело на подвесе, измеряют время 10 – 20 полных  колебаний  при возможно большей длине маятника. Повторяют измерения для других грузов. Данные заносят в таблицу 1.1  отчета.

2. Вычисляют период колебаний  с точностью до 0,001 секунды.

3. Вычисляют  оценочно относительную инструментальную погрешность  измерений d.

4. Сравнивают периоды колебаний.  Если различие в периоде колебаний не превышает 1% (приблизительно 0,01 с), то можно сделать вывод о практической независимости периода колебаний математического  маятника от его массы.

Задание 2. Изучение зависимости периода колебаний

                   математического маятника от его длины

1. Подвешивают на нити стальной шарик. Длину подвеса изменяют с таким  шагом, чтобы  получить с данной нитью  5-6 экспериментальных точек. Число колебаний в каждом опыте 10-15. Угол отклонения маятника из положения равновесия не должен превышать 5-6°. Полученные данные заносят в таблицу 1.2 отчета.

2. Зависимость Т=f(l) нелинейная. Поэтому для удобства экспериментальной проверки эту зависимость следует линеаризировать. Можно, например, построить график зависимости квадрата периода колебаний от длины маятника Т2=f(l).    Если  экспериментальные точки ложатся на прямую с небольшим разбросом, то можно сделать вывод о выполнении формулы (6) и следовательно, одного из законов математического маятника. Если разброс велик, то следует повторить всю серию измерений.

Контрольное задание.   Определение ускорения свободного падения.

 С помощью полученного графика можно определить ускорение свободного падения. Предварительно следует получить точное уравнение экспериментальной прямой.  Для этого  применяют метод наименьших квадратов (МНК) и определяют угловой коэффициент прямой, т.е.          

                                   k=DT2/Dl = 4p2/g ,    откуда  g=4p2/k.                           

Определите  из графика k =DT2/Dl  и вычислите ускорение свободного падения.

По формулам МНК определите  погрешность измерения g.

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.