Меню
Поиск



рефераты скачать Современная научно-техническая документация на статистические методы анализа результатов измерений

1.8. Если  то НСП или стандартной неопределенностью, оцениваемой по типу В, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения доверительные границы случайной погрешности или расширенную неопределенность для уровня доверия Р, вычисляемую по формуле

Если  то случайными погрешностями или стандартной неопределенностью, оцениваемой по типу А, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения границы НСП или расширенную неопределенность для уровня доверия Р, вычисляемую по формуле

1.9. Если  то доверительную границу погрешности результата измерений ∆Р вычисляют по формуле


где К – коэффициент , значение которого для доверительной вероятности 0,95 равно 0,76; для доверительной вероятности 0,99 значение коэффициента К равно 0,83.

Расширенную неопределенность для уровня доверия Р вычисляют по формуле



где к0 коэффициент охвата (коэффициент, используемый как множитель суммарной неопределенности для получения расширенной неопределенности). Значения коэффициента охвата для доверительной вероятности Р = 0,95 считают равным 2, для доверительной вероятности Р = 0,99 − равным 3.

1.10. Форма представления результатов однократных измерений должна соответствовать МИ1317.

1.11. При симметричной доверительной погрешности результата однократного измерения представляют в форме A;± ∆(P); P или A± ∆(P), или A; U(P).

4. Метод обработки результатов прямых измерений с многократным наблюдением


Метод обработки результатов прямых измерений с многократным наблюдениями заключается в следующем. В основе любого измерения лежат прямые измерения, в ходе которых находят некоторое числовое значение физической величины. С математической точки зрения прямое измерение можно выразить уравнением, которое имеет вид:


y = cx

где y – значение исследуемой величины;

с – цена деления шкалы прибора в единицах измеряемой величины;

x – отсчет по индикаторному устройству в делениях шкалы.

Каждая измерительная операция (отсчет, замер) называется наблюдением.

Теоретически, для достижения более точных значений погрешностей измерений, необходимо провести бесконечное число наблюдений, что нереально. На практике ограничиваются конечным числом наблюдений (от единицы до нескольких десятков или сотен). Полученный при этом ряд значений физической величины x1 , x2, x3…xi называют выборкой, а

R = xmax – xmin − размахом выборки.

Методы обработки результатов прямых измерений с многократными

После проведения измерений и получения результатов этих измерений необходимо:

Устранить из выборки очевидные промахи, т. е. вид грубой погрешности, зависящий от оператора и связанный с неправильным обращением со средством измерения: неверными отсчетами показаний приборов, описками при записи результатов, невнимательностью экспериментатора и т. п.

Промахи обнаруживают нестатистическими методами; и результаты наблюдений, содержащие промахи, как заведомо неправильные исключают из рассмотрения.

Исключить из результатов наблюдений систематические погрешности, являющиеся составляющими погрешности измерения и остающимися постоянной или закономерно меняющимися при повторных измерениях.

Упорядочить выборку в порядке возрастания ее элементов x↑I

Провести проверку выборки на наличие грубых погрешностей и ее связанность по размаху выборки

 при i=1……………n-1


и проверить, содержит ли крайний элемент грубую погрешность.

Грубые погрешности крайних элементов из рассмотрения исключить.

Если выборка не является связной – эксперимент необходимо повторить.

Результат измерения и оценка его среднего квадратического отклонения.

После исключения грубых погрешностей из результатов измерений вычисляется среднеарифметическое исправленных результатов наблюдений. Эта величина принимается за результат измерения.



где n – число исправленных наблюдений.

Если во всех результатах наблюдений содержится постоянная систематическая погрешность, допускается ее исключать, но после вычисления среднего арифметического исправленных результатов измерений.

Вычисляется оценка среднего квадратического отклонения результатов измерения по формуле



Эта величина позволяет проверить, не являются ли некоторые сомнительные результаты наблюдений ошибочными.

Если окажется, что сомнительные значения отличаются от вычисленной величины  больше, чем на три, то их следует исключить.

Вычисляется и оценивается среднее квадратическое отклонение  результата измерения по формуле



где − оценка среднего квадратического отклонения результатов измерения.

Определение доверительных границ случайной погрешности результата измерения.

Доверительные границы случайной погрешности результата измерения в соответствии с требованиями ГОСТ 8. 207 – 76 устанавливают для результатов наблюдений, принадлежащих нормальному распределению.

Если это условие не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.

Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 о 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.

Для определения доверительных границ погрешности результата измерения доверительную вероятность Р принимают равной 0,95.

В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности Р = 0,95, допускается указывать границы для доверительной вероятности Р = 0,99.

При числе результатов наблюдений  для проверки принадлежности их к нормальному распределению используется один из критериев К. Пирсона или щ2 Мизеса – Смирнова.

При числе результатов наблюдений 50 > n >16 для проверки принадлежности их к нормальному распределению предпочтительным является составной критерий.

При числе результатов наблюдений n < 50 нормальность их распределения проверяют при помощи составного критерия.

Критерий 1. Вычисляют отношение



где  − смещенная оценка среднего квадратического отклонения, вычисленного по формуле



Результаты наблюдений группы можно считать распределенными нормально, если



где квантели распределения, которые берутся из таблицы 1 (ГОСТ 8. 207 – 76 , приложение 1) по n,  и

q1 − заранее выбранный уровень значимости критерия.

Критерий 2. Можно считать, что результаты наблюдений принадлежат нормальному распределению, если не более m разностей превзошли значение


где S − оценка среднего квадратического отклонения, вычисляемая по формуле



где − верхняя квантиль распределения нормированной функции Лапласа, отвечающая вероятности  .

Значения Р определяются из таблицы 2 (ГОСТ 8. 207 – 76 приложение 1) и числу результатов наблюдений n.

При разных принимаемых уровнях значимости q для критериев 1 и 2, то уровень значимости составного критерия равен сумме частных уровней значимости.

В случае, если хотя бы один из критериев не соблюдается, то считают, что распределение результатов наблюдений группы не соответствует нормальному.

При числе результатов наблюдений n ≤ 15 принадлежность их к нормальному распределению не проверяют.

Доверительные границы е (без учета знака) случайной погрешности результата измерения находят по формуле



где t − коэффициент Стьюдента, который в зависимости от доверительной вероятности Р и числа наблюдений n находят по таблице справочного приложения 2 ГОСТ 8. 207 – 76.

Определение доверительных границ неисключенной систематической погрешности результата измерения.

Неисключенная систематическая погрешность результата образуется из составляющих, в качестве корторых могут быть неисключенные систематические погрешности: метода измерения; средства измерения; вызванные другими источниками.

В качестве границ составляющих неисключенной систематической погрешности принимают пределы допускаемых основных и дополнительных погрешностей средств измерений, если случайные составляющие погрешности пренебрежительно малы.

При суммировании составляющих неисключенной систематической погрешности результата измерения неисключенные систематические погрешности средств измерения каждого типа и погрешности поправок рассматривают как случайные величины. При отсутствии данных о виде распределения случайных величин их распределение принимают за равномерное.

Границы неисключенной систематической погрешности И результата измерения вычисляют путем построения композиции неисключенных систематических погрешностей средств измерений, метода и погрешностей, вызванных другими источниками. При равномерном распределении неисключенных систематических погрешностей эти границы (без учета знака) можно вычислить по формуле



где Иi − граница i – й неисключенной систематической погрешности;

k − коэффициент, определяемый принятой доверительной вероятностью. Коэффициент k принимают равным 1,1 при доверительной вероятности Р = 0,95.

Доверительную вероятность для вычисления границ неисключенной систематической погрешности принимают той же, что при вычислении доверительных границ случайной погрешности результата измерения.

Определение границ погрешности результата измерения.

В случае , то неисключенными систематическими погрешностями по сравнению со случайными пренебрегают и принимают, что граница погрешности результата ∆=е. Если , то случайной погрешностью по сравнению с систематическими пренебрегают и принимают, что граница погрешности результата ∆=И.

В случае, если неравенства, указанные в п. 2.7.1. не выполняются, границу погрешности результата измерения находят путем построения композиции распределения случайных и неисключенных систематических погрешностей, рассматриваемых как случайные величины в соответствии с

Если доверительные границы случайных погрешностей найдены в соответствии с п. 2.4. допускается границы погрешности результата измерения ∆ (без учета знака) вычислять по формуле



где К − коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей;

SУ − оценка суммарного среднего квадратического отклонения результата измерения.

Оценку суммарного среднего квадратического отклонения результата измерения вычисляют по формуле



Коэффициент К вычисляют по эмпирической формуле



Форма записи результатов измерений.

Оформление результатов измерений производится в соответствии с МИ 1317 – 2001.

При симметричной доверительной погрешности результаты измерений представляют в форме



где  − результат измерения.

Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности ∆ .

При отсутствии данных о виде функций распределений составляющих погрешности результата и необходимости дальнейшей обработки результатов или анализа погрешностей, результаты измерений представляют в форме



5. Методы обработки результатов косвенных измерений


Косвенные измерения − это измерения, результат которых определяют на основании прямых измерений величины, связанной с измеряемой величиной известной зависимостью (известными математическими формулами).

Уравнение косвенных измерений имеет вид


y=f(x1, x2, …xn)


где y − искомая величина, являющаяся функцией величин x1, x2 … xn , полученных методом прямых измерений.

На практике для определения искомой величины зачастую необходимо иметь результаты нескольких независимых наблюдений величин x, y, z, которые образуют функцию f = f(x, y, z).

Функция f предполагается дифференцируемой по всем переменным, а также предполагается, что на интервалах, куда попадают значения x, y, z функции f не имеет нулей частных производных.

Обозначение функции fi = f(xi, yi, zi)

Существуют два метода обработки результатов косвенных измерений:

− метод переноса погрешностей;

− выборочный метод.

Обработка результатов измерений методом переноса погрешностей.

Этот метод используется в случае, когда каждая из величин x, y, z, представляющих собой аргументы функций, измеряется независимо от остальных в своей серии опытов, и эти величины организуют выборку (или они близки друг к другу). Число опытов в сериях не обязательно должно быть одинаково, но обязательным условием остается неизменность условий для прямого измерения величин в своей серии, неизменность условий для f во всех сериях и взаимная независимость всех опытов.

Обработка полученных данных измерений каждого опыта производится по алгоритму прямых измерений с многократным наблюдением.

Рассчитать значение функции  = f(,, )

Вычислить частные производные от функций


, ,


Или, для легко логарифмируемой функции f, от ее логарифма



Вычислить полную погрешность функции



(формула переноса погрешностей) или по эквивалентной формуле для легко логарифмируемой функции



Результаты измерений представляются в форме


 P %, n


6. Обработка данных косвенных измерений выборочным методом


Этот метод применяется в том случае, если совместно измеренные значения аргумента функции xi, yi, zi не образуют выборок, но можно создать выборку значений функции {f}.

По каждому набору совместно измеренных значений аргументов рассчитать значения функции fi = f(xi, yi, zi).

Провести обработку полученной выборки {fi} согласно алгоритму обработки данных прямых измерений, находя среднее значение  и случайную погрешность ∆f функции.

Произвести вывод выражений для частных производных от функции



или для легко логарифмируемой функции f − от ее логарифма



По каждому набору совместно измеренных значений аргументов и погрешности СИ рассчитать погрешность СИ функции



Предполагается, что погрешности СИ измеряемых величин могут быть разными в разных опытах или, если функция имеет удобный для логарифмирования вид, по эквивалентной формуле



где fi − соответствующее данному набору аргументов значение функции.

Вычислить среднюю погрешность СИ функции


Если погрешности СИ аргументов одинаковы во всех опытах или при нахождении максимальных по всей серии опытов значений погрешностей СИ Иx = maxИxi, Иy = maxИyi, Иz = maxИzi, для определения погрешности СИ величины f можно использовать выражение



где , , .

Вычислить полную погрешность функции

Результаты измерений представляются в форме


  P %, n


Методы обработки результатов совместных измерений.

Совместными называют производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними. Уравнение совместных измерений имеет вид


yi = f (x1i, x2i, …, xni ; a, b, c, ...), i = 1, 2, ..., n,


где yi, x1i, x2i, ..., xni – значения величин, измеренных одновременно (прямо или косвенно) в i-й измерительной операции; а, b, с, ... – неизвестные искомые величины. Если число уравнений превышает число неизвестных, то эти уравнения в отличие от обычной системы уравнений называют условными. Для решения полученной системы используют метод наименьших квадратов.

Задача нахождения наилучшей аппроксимилирующей кривой в общем случае является достаточно сложной и наиболее просто решается, если функциональная зависимость имеет вид прямой линии y = ax + b. Поэтому на практике, если это возможно, сложные функциональные зависимости сводят к линейным зависимостям. При этом задача нахождения регрессионной кривой сводится к решению следующих задач:

− линеаризация нелинейных зависимостей, которая производится путем соответствующей замены переменных с целью получения новой функции,

− нахождение наилучших значений коэффициентов a и b в линейной зависимости y = ax + b или коэффициента a в линейной зависимости

y = ax согласно методу наименьших квадратов (МНК),

− нахождение случайных погрешностей и погрешностей СИ этих коэффициентов,

− нахождение по найденным значениям коэффициентов a и b физических констант, содержащихся в этих коэффициентах. Последняя задача решается стандартным приемом метода переноса погрешностей при косвенных измерениях.

Метод обработки результатов измерений по методу наименьших квадратов (МНК) для уравнения y = ax + b

Все данные результатов замеров свести в таблицу и произвести обработку этих данных по МНК для уравнения y = ax + b.

Вычислить средние значения x и y


 ,


Определить средние значения … …

,


Рассчитать дисперсии и СКО


, , ,


Определить случайные погрешности a и b. Для расчета необходимо брать коэффициент Стьюдента tp,n – 1 , в отличие от прямых измерений, где использовался tp,n :


,            


Вычислить погрешность СИ коэффициента b (погрешность СИ коэффициента a равна нулю)



Определить полные погрешности a и b


 и


Результаты измерений представляются в форме


, P


Метод обработки результатов измерений по методу наименьших квадратов (МНК) для уравнения y = ax.

Все данные результатов замеров свести в таблицу и провести обработку этих данных по МНК для уравнения y = ax

Вычислить среднее значение a



Вычислить дисперсию и СКО


,


Вычислить случайную погрешность коэффициента a



Вычислить погрешность СИ коэффициента a



Вычислить полную погрешность коэффициента a



Результат измерения представляется по форме


, Р


Список использованной литературы


1. ГОСТ Р 8. 563 – 96 Государственная система обеспечения единства измерений. Методика выполнения измерений.

2. МИ 1317 – 2001 Государственная система обеспечения единств измерений. При

Результаты и характеристика погрешностей измерений.

3. РМГ 43 – 2001 Государственная система обеспечения единства измерений. Применение «Руководства по выражению неопределенности измерений».

4. Р 50. 2. 038 – 2004 Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешности и неопределенности результата измерения.

5 МИ 1552 – 86 Методика выполнения прямых однократных измерений.

6. ГОСТ 8. 207 – 76 Государственная система обеспечения единства измерений.

Прямые измерения с многократными наблюдениями, методы обработки результатов наблюдений.

7. ГОСТ ИСО 5479 – 2002 Государственная система обеспечения единства измерений. Проверка отклонения распределения вероятностей от нормального распределения.

8. МИ 199 – 70 Государственная система обеспечения единства измерений. Методика установления вида математической модели распределения погрешностей.

9. МИ 2083 – 90 СИ Измерения косвенные. Определение результатов измерений и оценивание их погрешностей.

10. ГОСТ Р ИСО 5725 – 4 – 2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений.

11. А.Г.Сергеев, В.Г.Крохин. Метрология: Учеб. пособие для студентов вузов. М.: Логос, 2001. 408 с.

12. И.Ф.Шишкин. Теоретическая метрология. М.: Издательство стандартов, 1991.472 с.

13. И.Ф.Шишкин, В.Н.Яншин. Прикладная метрология. М.: РИЦ "Татьянин день", 1993. 150 с.

14. Артемьев Б.Г., Лукашов Ю.Е. Справочное пособие для специалистов метрологических служб. – М.: ИПК Издательство стандартов, 2004.

15. И.Ф.Шишкин. Основы метрологии, стандартизации и контроля качества. М.: Стандарты, 1988.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.