Меню
Поиск



рефераты скачать Современная научно-техническая документация на статистические методы анализа результатов измерений

Современная научно-техническая документация на статистические методы анализа результатов измерений











«Современная НТД на статистические методы анализа прямых,

косвенных, совместных, однократных и многократных измерений»


План


1. Обеспечение единства измерений

2. Характеристики погрешности измерений

3. Методы обработки результатов прямых однократных измерений

4. Метод обработки результатов прямых измерений с многократным наблюдением

5. Методы обработки результатов косвенных измерений.

6. Обработка данных косвенных измерений выборочным методом

Список использованной литературы

1. Обеспечение единства измерений


Метрология – отрасль физики, изучающая единицы измерения, устанавливающая эталоны и разрабатывающая методы и средства точных измерений, а также способы достижения требуемой точности.

Практическая метрология занимается изучением вопросов практического применения в различных сферах деятельности разработок теоретической метрологии с обязательным применением положений законодательной метрологии. Таким образом, сущность практической метрологии сводится к измерению любой заданной величины любого объекта измерения и получение результата измерения с максимально возможной точностью.

Следовательно, непосредственной целью измерения (по определению МИ 1317 – 2004) является определение истинных значений постоянной или изменяющейся измеряемой величины. Результат измерений является реализацией случайной величины, равной сумме истинного значения измеряемой величины и погрешности измерения. В качестве измеряемых величин принимают параметры модели объекта измерений.

С целью исключения разночтений различных методик проведения измерений, самодеятельности в обработке результатов измерений, и их статистического анализа создана законодательная база, устраняющая все вышеперечисленные недостатки и на государственном уровне создавшая систему обеспечения единства измерений.

По данному разделу работы можно указать следующую НТД:

РМГ 29 – 99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения.

ГОСТ Р 8. 563 – 96 Государственная система обеспечения единства измерений. Методика выполнения измерений.

ГОСТ 8. 009 – 84 Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерения.

МИ 1317 – 2004 Рекомендация. Результаты и характеристики погрешностей измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров.

РД 50 – 453 – 84 Государственная система обеспечения единства измерений. Характеристики погрешностей средств измерений в реальных условиях эксплуатации. Методы расчета.

Несмотря на то, что ряд НТД носит рекомендательный характер, положения, изложенные в них, являются обязательными для исполнения и распространяются на нормативные, методические и технические документы, техническую литературу, в которой указывают требования к измерениям или описывают измерения, проводимые в научных исследованиях и др.

Для удобства работы с числовыми значениями результатов измерений и погрешностей измерений, МИ 1317 – 2004 рекомендует наименьшие разряды числовых значений результатов измерений принимать такими же, как и наименьшие разряды числовых значений среднего квадратического отклонения абсолютной погрешности измерений или числовых значений границ, в которых находится абсолютная погрешность измерений (или статистических оценок этих характеристик погрешности).

В качестве функции плотности распределения вероятностей погрешности измерения принимают закон, близкий к нормальному усеченному, если имеются основания предполагать, что реальная функция распределения−функция симметричная, одномодальная, отличная от нуля на конечном интервале значений аргумента, и другая информация о плотности распределения отсутствует.

В качестве функции плотности распределения вероятностей составляющих погрешности измерений, для которых известны только пределы допускаемых значений, т.е. границы интервала, в которых находится соответствующая составляющая погрешности измерений с вероятностью 1, при расчетах характеристик погрешности измерений принимают закон равномерной плотности, если отсутствует информация об ином виде распределения.


2. Характеристики погрешности измерений


Рекомендация МИ 1317 – 2004 устанавливает следующие группы характеристик погрешности измерений:

1.  Задаваемые в качестве требуемых или допускаемых – нормы характеристик погрешности измерений (нормы погрешности измерений).

2.  Приписываемые любому результату измерений из совокупности результатов измерений, выполняемых по одной и той же аттестованной МВИ– приписанные погрешности измерений.

3.  Отражающие близость отдельного, экспериментально полученного результата измерений к истинному значению измеряемой величины – статистические оценки характеристик погрешности измерений (статистические оценки погрешности измерений).

Нормы погрешности измерений, а также приписанные характеристики – представляют собой вероятные характеристики (характеристики генеральной совокупности) случайной величины – погрешности измерений. Эти нормы применяют преимущественно при массовых технических измерениях, выполняемых, например, при технологической подготовке производства, в процессе разработки, испытаний и эксплуатации продукции и т.п.

При измерениях, которые выполняются при проведении научно – исследовательских и метрологических работ (определение физических констант; свойств и состава стандартных образцов и т.п.) преимущественно применяют статистические оценки погрешности измерений. Они представляют собой статистические (выборочные) характеристики случайной величины – погрешности измерения.

В тоже время Рекомендация устанавливает следующие альтернативные вероятностные и статистические характеристики погрешности измерений:

1.  среднее квадратическое отклонение погрешности измерений;

2.  границы, в пределах которых погрешность измерений находится с заданной вероятностью;

3.  характеристики случайной и систематической составляющих погрешности измерений.

Характеристики погрешности измерений и их статистическая оценка приведены в таблице 1.


Таблица 1.

Характеристики погрешности измерений

Статистические оценки (по2.1.3)

Среднее квадратическое отклонение погрешности измерений

Оценка [Д] и (в случае необходимости) нижняя у1 [Д] и верхняя уh [Д] границы доверительного интервала, доверительная вероятность Pдов Д

Границы, в которых погрешность измерений находится с заданной вероятностью

Оценка нижней  и верхней  границ интервала, вероятность Р

Характеристики случайной составляющей погрешности измерений: Среднее квадратическое отклонение нормализованная автокорреляционная функция Характеристики нормализованной автокорреляционной функции (например, интервал корреляции)

Оценка [] и (в случае необходимости) нижняя у1 [] и верхняя уh [] границы доверительного интервала, доверительная вероятность Pдов Д

Оценка функции (ф)

Оценка характеристики

Характеристики неисключенной систематической составляющей погрешности измерений: среднее квадратическое отклонение неисключенной систематической составляющей границы, в которых неисключенная систематическая составляющая находится с заданной вероятностью

Оценка [Дs] и (в случае необходимости) нижняя у1 [Дs] и верхняя уh [Дs] границы доверительного интервала, доверительная вероятность Pдов s

Оценка нижней  и верхней  границ интервала, вероятность Рs


В таблице 1 приведены обозначения для характеристик абсолютной погрешности измерений. Для обозначения характеристик относительной погрешности букву ∆ заменяют на д.

Рекомендуемое значение вероятности (доверительной вероятности) Р = 0,95 .

В особых случаях, например при измерениях, которые нельзя повторить, допускается указывать доверительные границы или расширенную неопределенность для уровня доверия Р и более высоких вероятностей.

Статистические оценки характеристик погрешности измерений представляют одной или при необходимости несколькими характеристиками и указывают их в единицах измерения (абсолютные) или процентах (долях) от результата измерения (относительные).


3. Методы обработки результатов прямых однократных измерений


В практической деятельности большинство проводимых измерений являются прямыми и однократными, в обычных условиях их точность вполне приемлема.

Прямые однократные измерения – процесс, при котором искомое значение величины находят непосредственно из опытных данных, причем сам процесс измерения выполняется только один раз.

За результат однократного измерения А принимается значение величины, полученное при измерении.

Выполнение однократных измерений обосновывают следующими факторами:

− производственной необходимостью (невозможность повторения измерения, экономическая целесообразность и т. д.);

− возможностью пренебрежения случайными погрешностями;

− случайные погрешности существенны, но доверительная граница погрешности результата измерения не превышает допускаемой погрешности измерения.

Метрологический анализ однократного измерения выявляет одно в нем следующие особенности:

1.  Из множества возможных значений отсчета получается и используется только одно.

2.  Представление о законе распределения вероятностей отсчета и его среднем квадратическом отклонении формируется на основе информации и опыта ранее проведенных аналогичных измерений.

При использовании этой информации уточняется:

− физическая сущность изучаемого явления;

− уточняется его модель;

− определяются факторы, влияющие на точность измерения, и меры, направленные на уменьшение влияния этих факторов (экранирование, компенсация электрических и магнитных полей и др.);

− значения поправок;

− выбор решения в пользу той или иной методики измерения;

− выбирается средство измерения, изучаются его метрологические характеристики и опыт проведения подобных измерений, проводимых ранее.

Итогом этой предварительной работы должна стать твердая уверенность в том, что точность однократного измерения достаточна для решения поставленной задачи.

Если это условие выполняется, то производится процесс измерения с целью получения одного значения отсчета.

Но поскольку отсчет (по основному постулату метрологи) является случайным числом, а одно единственное значение отсчета xi и получения одного единственного значения показаний Xi средства измерения, имеющего туже размерность, что и измеряемая величина, это приводит к выводу – необходимо определить погрешность, которая допущена при измерении, и провести оценивание этой погрешности.

Существует две методики оценивания погрешностей и неопределенности результата измерений, которые представлены в НТД Р 50. 038 – 2004 «Измерения прямые однократные» и подразделяются на два типа: тип А и тип В согласно требованиям РМГ 43 – 2001 (Государственная система обеспечения единства измерений. Применение «Руководства по выражению неопределенности измерений»).

Оценивание погрешности и неопределенности результата измерения по методике типа А соответствует методике выражения неопределенности измерений, принятых в основополагающих документах (НД) по метрологии, применяемых в странах – участниках Соглашения.

При оценивании погрешности и неопределенности результата измерения по методике типа В, принятой «Руководством», учитывается, что составляющими погрешности результата измерения являются погрешности СИ (средство измерения), метода измерения, оператора, а также погрешности, обусловленные изменением условий измерения. Погрешность результата однократного измерения чаще всего представлена НСП (неисключенная систематическая погрешность) и случайными погрешностями.

Характеристики НСП в этом случае могут быть представлены границами ±и и доверительными границами ±и(Р), а характеристикой случайных погрешностей могут быть – СКО S и доверительные границы ±е(Р).

Погрешности СИ определяют на основании их метрологических характеристик, которые указываются в нормативных и технических документах; погрешности метода измерения и оператора должны быть определены при разработке и аттестации конкретной МВИ.

Оценивание случайной погрешности и стандартной неопределенности, оцениваемой по типу А, результата измерения

Доверительные границы случайной погрешности и стандартную неопределенность результата измерения вычисляют в следующем порядке.

Если случайные погрешности представлены несколькими СКО Si, то СКО результата однократного измерения S(A) вычисляют по формуле:


1.  Учитывая то, что погрешности представлены несколькими СКО, тогда стандартную неопределенность результата однократного измерения UA вычисляют по формуле:



Где m - число составляющих случайных погрешностей;


UiA = Si.


Доверительную границу случайной погрешности измерения е(P) вычисляют по формуле



где ZP/2 – P/2 точка нормированной функции Лапласа, отвечающая вероятности P .При доверительной вероятности P = 0,95 Z095/2 принимают равным 2, при P=0,99 Z0,99/2=2,6 .

Если случайные погрешности представлены доверительными границами еi(P), соответствующими одной и той же вероятности, доверительную границу случайной погрешности результата однократного измерения вычисляют по формуле:



1.4.         Если случайные погрешности представлены доверительными границами, соответствующими разным вероятностям, сначала определяют СКО измерения по формуле:



А затем вычисляют доверительные границы случайной погрешности результата измерения по формуле



Оценивание неисключенной систематической погрешности и стандартной неопределенности, оцениваемой по типу В, результата измерения.

При условии, когда неисключенная систематическая погрешность (НСП) выражена границами этой погрешности и если среди составляющих погрешности результата измерения в наличии одна НСП, то стандартную неопределенность UB, обусловленную неисключенной систематической погрешностью, заданной своими границами ± И оценивают по формуле:



Доверительные границы НСП результата измерения вычисляют следующим образом:

1.5. Доверительную границу НСП результата измерения (без учета знака) при наличии нескольких НСП, заданных своими границами , доверительную границу НСП результата измерения (без учета знака) вычисляют по формуле


где k – поправочный коэффициент, определяемый принятой доверительной вероятностью и числом m составляющих

При доверительной вероятности Р =0,95 поправочный коэффициент k принимают равным 1,1.

При доверительной вероятности Р = 0,99 поправочный коэффициент k принимают равным 1,45, если число суммируемых составляющих m

Если число составляющих равно четырем (m = 4), то поправочный коэффициент k ≈ 1,4; при m = 3 k ≈ 1,3; при m = 2 k ≈ 1,2.

Суммарную стандартную неопределенность Uc,B (при условии, указанном выше в п. 1.1) вычисляют по формуле



1.  6. При наличии нескольких НСП, заданных доверительными границами рассчитанными по формуле п.1,1. доверительную границу НСП результата однократного измерения вычисляют по формуле



Суммарную стандартную неопределенность с учетом условий, указанных выше, вычисляют по формуле


где − доверительная граница j − й НСП, соответствующая доверительной вероятности Рi;

k и ki − коэффициенты, соответствующие доверительной вероятности Р и Рi

Оценивание погрешности и расширенной неопределенности результата измерения.

1.  7. Если погрешности метода измерения и оператора пренебрежимо малы по сравнению с погрешностью используемых СИ (не превышает 15% погрешности СИ), то за погрешность результата измерения принимают погрешность используемых СИ.

Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.