Меню
Поиск



рефераты скачать Решение обратной задачи вихретокового контроля

·        Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной возможно с хорошей точностью ( погрешность 2-3% ). Погрешность восстановления увеличивается с уменьшением глубины.

·        Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·         Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью (погрешность 2-3%). Погрешность восстановления увеличивается с уменьшением глубины, занимаемой распределением.

9.4 Восстановление по зашумленным данным

Рассмотренные в данном разделе результаты демонстрируют возможность восстановления распределений ЭП в реальных условиях. Графики представлены в первых четырех пунктах Приложения 3.

 На графиках рассматриваемые зависимости показаны цветами: результат восстановления при погрешности данных равной 1% - голубым, результат восстановления при погрешности данных равной 2% - коричневым, результат восстановления при погрешности данных равной 5% - синим.

Исходя из них можно сделать следующие выводы:

·        Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью ( погрешность 2-8% ) для приповерхностных слоев глубиной порядка четверти пластины.

·        Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной затруднено( погрешность осциллирует в пределах 0-10% ). Погрешность восстановления увеличивается с уменьшением глубины, занимаемой распределением.

·        Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·         Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с хорошей точностью (погрешность 3-6% для одноименных аппроксимаций и 7-10% в противном случае). Погрешность восстановления увеличивается с уменьшением глубины, занимаемой распределением.

9.5 Восстановление с учетом дополнительной информации

С целью улучшения результатов восстановления в реальной обстановке, осложненной наличием зашумленных данных, следует использовать более жесткие ограничения на величину ЭП в приповерхностных слоях.

Для иллюстрации приведем несколько графиков, представленных в пятом пункте Приложения 3. На графиках рассматриваемые зависимости показаны цветами: базовые ограничения - коричневым, жесткие ограничения на верхней поверхности - голубым, жесткие ограничения на обоих поверхностях - малиновым.

Исходя из полученных результатов можно сделать следующие выводы

·        Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Дополнительные жесткие ограничения результаты восстановления не улучшают.

·        Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной затруднено. Дополнительные жесткие ограничения результаты восстановления не улучшают.

·        Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·         Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью (погрешность 6-10% ). Погрешность восстановления уменьшается при использовании дополнительные ограничений примерно вдвое, особенно в приповерхностном слое толщиной порядка 10%.

9.6 Восстановление при различном возбуждении

Для выбора необходимого количества измерений Uвн* и соответствующих им частот возбуждения ВТП рассмотрим три возможных диапазона частот, в каждом из которых исследуем случаи пяти, десяти и пятнадцати частот.

На графиках в шестом пункте Приложения 3 рассматриваемые зависимости показаны цветами: 5 частот - коричневым, 10 частот - голубым , 15 частот - малиновым.

Область низких частот

Исходя из полученных результатов можно сделать следующие выводы

·        Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.

·        Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной затруднено. Для улучшения результатов восстановления в приповерхностном слоев глубиной порядка четверти пластины следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.

·        Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·         Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью (погрешность 6-8% ). Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.

Область средних частот

Исходя из полученных результатов можно сделать следующие выводы:

·         Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.

·        Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·        Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·         Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью (погрешность 6-8% ). Для улучшения результатов восстановления следует использовать 10 частот в случае погрешности данных не более 2% и 15 частот в противном случае.

Область высоких частот

Исходя из полученных результатов можно сделать следующие выводы:

·        Восстановление глубинных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью для приповерхностных слоев глубиной порядка четверти пластины. Для улучшения результатов восстановления следует использовать 15, что позволяет восстанавливатьраспределения с погрешностью (2-5)%.

·        Восстановление глубинных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·        Восстановление поверхностных распределений с помощью аппроксимаций сплайном и кусочно-линейной практически невозможно. Имеют место осцилляции, приводящие к погрешностям, превышающим 10%.

·        Восстановление поверхностных распределений с помощью аппроксимаций экспоненциальной и гиперболическим тангенсом возможно с удовлетворительной точностью. Для улучшения результатов восстановления следует использовать 15 частот.

10. Заключение

По результатам проделанной работы можно сделать следующие выводы:

·   Существует принципиальная возможность восстановления как поверхностных так и глубинных распределений ЭП с погрешностью, не превышающей (2-3)%. Для восстановления поверхностных распределений следует использовать экспоненциальную и гиперболическую аппроксимации, а для глубинных сплайн и кусочно-постоянную (возможно использование экспоненциальной и гиперболической аппрксимаций для в приповерхностном слое глубиной порядка четверти пластины).

·   Существенное отрицательное влияние на результаты восстановления имеют погрешность измерения Uвн* (не следует использовать данные с погрешностью измерения более 2%) и малая глубина распределения ЭП (распределения ЭП сосредоточенные в приповерхностном слое глубиной  менее (3-5)% восстанавливаются хуже).

·   Использование жестких ограничений на величину ЭП в приповерхностных слоях оправдано при восстановлении поверхностных распределений, причем при наличии данных с погрешностью, превосходящей 2%, или малой глубины распределения предпочтительнее задавать ограничения на обеих поверхностях. При зашумленности данных порядка (1-2)% достаточно задать жесткие ограничения лишь на верхней поверхности.

·   В наборе частот возбуждения ВТП должны присутствовать низкочастотные составляющие, влияние которых особенно заметно при работе с глубинными распределениями и соответствующими аппроксимациями. Рекомендуется использовать порядка десяти частот, равномерно распределенных по частотному диапазону (0.001¸70)КГц. В условиях высокой погрешности измерений или отчетливо выраженных приповерхностных изменениях ЭП заметное положительное влияние оказывает увеличение числа частот возбуждения ВТП (например, до пятнадцати.).

В процессе работы над задачей был проведен анализ литературы, выбрана модель задачи и способы ее аппроксимации. При помощи программы, разработанной согласно предложенной модели, были проведены расчеты модельных задач и рассмотрены результаты восстановления распределений ЭП в зависимости от основных влияющих факторов.

Таким образом, цели, поставленные в техническом задании, решены в полном объеме.

11. Литература

1.    Неразрушающий контроль качества изделий электромагнитными методами, Герасимов ВГ, 1978,215

2.    Вихретоковый контроль накладными преобразователями., Герасимов ВГ,1985,86

3.    Вихретоковые методы и приборы неразрушающего контроля., Рудаков ВН, 1992, 72

4.    Накладные и экранные датчики., Соболев ВС, 1967, 144

5.    Теория и расчет накладных вихретоковых преобразователей., Дякин ВВ, 1981, 135

6.    Основы анализа физических полей.,Покровский АД, 1982, 89

7.    Дефектоскопия металлов., Денель АК, 1972, 303

8.    Индукционная структуроскопия., Дорофеев АЛ,1973,177

9.    Структура и свойства металлов и сплавов.Справочник., Шматко ОА,1987,580

10.Некорректные задачи Численные методы и приложения., Гончарский АВ,1989,198

11.Некорректные задачи матфизики и анализа., Лаврентьев ММ,1980,286

12.Линейные операторы и некорректные задачи., Лаврентьев ММ,1991,331

13.Методы решения некорректно поставленных задач Алгоритмич. аспект., Морозов ВА, 1992,320

14.Численные методы решения некорректных задач., Тихонов АН,1990,230

15.Начала теории вычислительных методов, Крылов ВИ,1984,260

16.Математическое программирование в примерах и задачах., Акулич ИЛ,1993,319

17.Математическое программирование., Карманов ВГ,1986,286

18.Математическое программирование., Орехова РА,1992,290

19.Нелинейное программирование Теория и алгоритмы., Базара М,1982,583

20.Прикладное нелинейное программирование., Химмельблау Д,1975,534

21.Введение в методы оптимизации., Аоки М,1977,344

22.Введение в оптимизацию., Поляк БТ,1983,384

23.Курс методов оптимизации., Сухарев АГ,1986,326

24.Практическая оптимизация., Гилл Ф,1985,509

25.Численные методы оптимизации., Полак Э,1974,367

26.Алгоритмы решения экстремальных задач., Романовский ИВ,1977,352

27.Методы решения экстремальных задач., Васильев ФП,1981,400

28.Методы решения экстремальных задач и их применение в системах оптимизации., Евтушенко ЮГ, 1982,432

29.Численные методы решения экстремальных задач., Васильев ФП,1988,549

30.Введение в вычислительную физику., Федоренко РП,1994,526

31.Методы математической физики., Арсенин ВЯ,1984,283

32.Уравнения математической физики., Тихонов АН,1977

33.Уравнения математической физики., Владимиров ВС,1988,512

34.Метод интегральных уравнений в теории рассеивания., Колтон Д,1987,311

35.Теория электромагнитного поля., Поливанов КМ,1975,207

36.Eddy current testing. Manual on eddy current method., Cecco VS,1981,195

37.Optimization methods with applications for PC., Mistree F,1987,168

38.Electromagnetic inverse profiling., Tijhuis AG,1987,465

39.Inverse acoustic and electromagnetic scattering theory., Colton D,1992,305

40." Накладной электромагнитный преобразователь над объектом контроля с изменяющимися по глубине электрическими и магнитными свойствами", Касимов ГА, Кулаев ЮВ, "Дефектоскопия", 1978, №6, с81-84

41." Возможности применения методов теории синтеза излучающих систем в задачах электромагнитного контроля ", Кулаев ЮВ, 1980, тематический сборник "Труды МЭИ", выпуск 453, с12-18

42." Analitical solutions to eddy-current probe-coil problems " , Deeds WE, Dodd CV, ²Journal of Applied Phisics², 1968, vol39, ?3, p2829-2838

43." General analysis of probe coils near stratified conductors " , Deeds WE, Dodd CV,²International Journal of Nondestructive Testing², 1971, vol3, ?2, p109-130

44." Tutorial. A review of least-squares inversion and its application to geophysical problems ", Lines LR, Treitel S, "Geophysical Prospecting ", 1984, vol32, ?2, p159-186

45." Eddy current calculations using half-space Green’s functions " , Bowler JR, ²Journal of Applied Phisics², 1987, vol61, ?3, p833-839

46." Reconstruction of 3D conductivity variations from eddy current( electromagnetic induction ) data ",  Nair SM, Rose JH, ² Inverse Problems², 1990, ?6, p1007-1030

47." Electromagnetic induction (eddy-currents) in a conducting half-space in the absence and presence of inhomogeneities: a new formalism " , Nair SM, Rose JH, ²Journal of Applied Phisics², 1990, vol68, ?12, p5995-6009

48." Eddy-current probe impedance due to a volumetric flaw " , Bowler JR, ²Journal of Applied Phisics², 1991, vol70, ?3, p1107-1114

49." Theory of eddy current inversion " , Bowler JR, Norton SJ, ²Journal of Applied Phisics², 1993, vol73, ?2, p501-512

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.