Меню
Поиск



рефераты скачать Рентгеноструктурний аналіз молибдену


 (27)


де S = (4π/λ)sinθ Параметр S, залежний від довжини хвилі і кута розсіювання, зустрічається в структурному аналізі і в теорії твердого тіла. Він пов'язаний з міжплощинною відстанню d для площин кристалічних граток, від яких походить віддзеркалення першого порядку під кутом θ при довжині хвилі λ. Згідно умові віддзеркалення 2dsinθ = λ , маємо


2sinθ/ λ = 1/d або 4πsinθ/ λ = 2π/d, тобто S = 2π/d (28)


З другого боку, параметр S пов'язаний з хвильовим вектором розсіяної хвилі співвідношенням


S = 2|k|sinθ (29)


а також з вектором оберненої гратки рівністю


S = 2π|r*| (30)

Підставляючи (27) в (26), одержимо для амплітуди розсіювання атомом вираз


 (31)


Щоб додати йому конкретніший вигляд, припустимо, що розподіл електронів в атомі сферично симетричний і ρ(r) залежить тільки від модуля вектора r, але не від його напряму. В цьому випадку елемент об'єму dV = r2drsinαdαdφ. Вираз (31) можна написати у вигляді


 (32)


Інтегруючи (32) по α і φ, одержимо


 (33)


де 4πr2 ρe (r)dr число електронів в сферичному шарі атома між радіусами r і r + dr .

Функція


 (34)


характеризує розсіюючу здатність атома і називається атомною амплітудою, а F2(S) — атомним чинником розсіювання. Числове значення F(S) показує, в скільки разів амплітуда розсіювання атомом в даному напрямі більше амплітуди розсіювання одним електроном. При S → 0 функція sinSr/(Sr) → 1; значення F(S) при нульовому куті розсіювання рівне числу електронів атома:


 (35)


Отже, чим вище порядковий номер хімічного елементу, тим більше числове значення F(S). Із збільшенням параметра S функція F(S) монотонно убуває.

Щоб обчислити атомну амплітуду F(S) теоретично, потрібно знати просторовий розподіл електронної густини в атомі. Згідно квантової теорії, вірогідність знаходження електрона в точці на відстані r від центру атома визначається хвильовою функцією |Ψ|2 . У разі атома водню


 (36)


де r1 — радіус першої боровськой орбіти атома Н. Відповідний вираз для F(S) приймає вигляд


 (37)

звідки


 (38)


Ця формула показує, що атомна амплітуда розсіювання залежить тільки від S =2ksinθ. Як ρ(r) функція F(S) сферично симетрична. Відмінність між F(S) і ρ(r) полягає у тому, що функція ρ(r) описує розподіл електронної густини в звичному просторі, F(S) представляє цей розподіл в k— просторі, тобто просторі хвильових векторів. Числові значення F(S) для атомів деяких елементів приведені в довідкових таблицях. Знаючи F(S) можна написати вираз для інтенсивності розсіювання атомів:


 (39)



Найбільший внесок в когерентне розсіювання вносять внутрішні електрони атома. Зовнішні електрони атома обумовлюють інтенсивне когерентне розсіювання при малих кутах. Це виразно видно з мал. 2.3,а, на якому представлено радіальний розподіл електронної густини ls22s22p63s23p6 електронів іона К+. Там же показане (мал. 2.3,6) відповідне їм f-криві розсіювання. З малюнка видно, що чим далі від ядра знаходиться дана група електронів, тим швидше убуває відповідна їй f-функція з кутом розсіювання. Дійсно, порівнюючи f-криві для ls2-,2s2- і 3s2 электронов іона К+, бачимо, що значення f1s, обумовлене розсіюванням ls2-электронов (r1 = 0,03 Å), майже не змінюється з кутом розсіювання; f2s — крива, обумовлена розсіюванням 2s2-электронами (r2 = 0,18 Å), монотонно спадає, тоді як для f3s -кривої (r3= 0,6 Å) характерне швидке убування з переходом в область негативних значень з подальшою сильно затухаючою осциляцією біля осі абсцис. Амплітуда сумарного розсіювання іона К+

 

F(S) = f1s(S) + f2s(S) + f2p(S) + f3s(S) + f3p(S) (40)


Відзначимо, що



є інтегралом Фурье, який має властивість оборотності.



Це дозволяє визначити функцію радіального розподілу електронної густини атома за даними про амплітуду розсіювання на цьому атомі, тобто перейти від зворотного простору до звичного координатного простору. При цьому

 (41)


На мал. 2.4 представлена залежність електронної густини від відстані в атомі неону. Як видно, дані експерименту цілком відповідають теоретичним розрахункам.

В розсіяному випромінюванні присутні хвилі із зміненою довжиною хвилі. Вони виникають в результаті ефекту Комптона, тобто зіткнень первинних фотонів рентгенівського випромінювання із зовнішніми слабкозв'язанними електронами атомів. Фотон при зіткненні з електроном віддає йому частину енергії і імпульсу, і передає кінетичну енергію mυ2/2 (мал. 2.5). Відхиляючий від первинного напряму, фотон має вже меншу енергію і менший імпульс і має велику довжину хвилі. Нехтуючи релятивістськими ефектами, запишемо:

а) рівняння збереження енергії


 (42)


б) рівняння збереження імпульсу


 (43)


Тоді зміна довжини хвилі фотона при некогерентному розсіянні


З цієї формули видно, що у міру збільшення кута розсіювання значення ∆λ, зростає від нуля до 0,048 Å.

У структурному аналізі має істотне значення не стільки зміна довжини хвилі при розсіянні рентгенівського випромінювання, скільки внесок некогерентного розсіювання в сумарну інтенсивність розсіювання досліджуваної речовини.



Некогерентне розсіювання дає безперервний фон, інтенсивність якого зростає з кутом розсіювання. При великих значеннях S некогерентне розсіювання від елементів з малим атомним номером може перевершувати когерентне у декілька разів (мал. 2.6). Тому воно завжди віднімається із загального розсіювання. Звичний спосіб обліку поправки на некогерентне розсіювання полягає в обчисленні його величин теоретично по одній з формул, виведених для цієї мети. Одна з них має вигляд


,

,

де Z — атомний номер елементу.

Таким чином, повна інтенсивність незалежного розсіювання одним

атомом складається з когерентного і некогерентного доданків:


I(S)= IK(S)+ IHK(S) (44)

Розсіювання електронів вільним атомом

Застосування методу дифракції електронів для дослідження молекулярної структури речовини засноване на хвильових властивостях цих частинок. Пучок електронів, що розповсюджується у напрямі осі X, можна представити плоскою монохроматичною хвилею, описуваною хвильовою функцією



Взаємодіючи з електричним полем атома, ця хвиля частково розсівається. На відстані L від центру атома розсіяна хвиля представляється у вигляді


 (45)


де fe(S) — атомна амплітуда розсіювання електронів, що має розмірність довжини.

Результуюча електронна хвиля представляється суперпозицією падаючої плоскої і розсіяної сферичної хвиль:


 (46а)

або


Ψ = Ψ0 + η (46б)


де А і B — деякі постійні.

Тут η << Ψ0, оскільки розсіювання складає лише незначну частку первинного пучка. Результуюча хвильова функція Ψ електрона, рухаючегося в електричному полі атома, знаходиться з рівняння Шредінгера:


(47)


де m — маса розсіюючого електрона, E — його повна і U(r) —-потенційна енергія в електричному полі атома, h — постійна Планка. Передбачається, що U(r) швидко убуває із зростанням відстані r від ядра. Підставимо (46б) в (47). Враховуючи, що хвильова функція Ψ0 плоскої хвилі задовольняє рівнянню руху електрона поза атомом (∆Ψ0 + k2Ψ0= 0), і нехтуючи добутком U(r)η як величиною другого порядку малості, одержимо


 (48)


де k2 = 8π2mE/h2 = (2π/λ)2

Вираз (48) аналогічно рівнянню Пуассона. Його рішення має вигляд


(49)


де r — відстань від центру атома до електрона; L — відстань від центру O атома до точки спостереження A; l = L—rn; (r n) — проекція вектора r на напрям розсіювання n (мал. 2.7). Якщо точка спостереження знаходиться на великій відстані від центру атома, то в знаменнику (49) можна замінити l на L. Тоді


(50)

 

Зіставляючи це рівняння з (45), можна записати вираз для атомної амплітуди розсіювання електронів:



(51)


Переходячи до сферичних координат і інтегруючи (51) по α і φ, одержуємо


(52)

 

Цей вираз нагадує атомний чинник для рентгенівського випромінювання

(51)

 

Зіставляючи вирази (52) і (51), помічаємо, що амплітуда розсіяної електронної хвилі пропорційна потенційній енергії електрона в полі атома, тоді як амплітуда розсіювання рентгенівського випромінювання пропорційна електронній густині атома.

Для безпосередніх обчислень атомних амплітуд розсіювання електронів зручно у формулі (51) виразити потенційну енергію U(r) через електронну густину ρe(r). Запишемо в явному вигляді вираз для U(r).

Електростатичний потенціал в будь-якій точці атома складається з потенціалу позитивно зарядженого ядра і потенціалу електронної оболонки. Потенціал в точці r, створюваний зарядом ядра, рівний Ze/r. Щоб визначити потенціал, створюваний в тій же точці зарядом електронної оболонки атома, розглянемо елемент об'єму dV1 на відстані r1 від центру О атома (мал. 2.8). Заряд, зосереджений в цьому об'ємі, рівний eρe(r1)dV1. Потенціал в точці r, створюваний цим зарядом, eρe(r1)dV1/|rr1|. Потенціал в тій же точці, створюваний всією електронною оболонкою атома, представиться як



Загальна потенційна енергія електрона усередині атома виразиться формулою


 (52)


Підставляючи цей вираз в рівняння (52), одержимо

(53)


Візьмемо перший інтеграл


 (54)


якщо, як і раніше, покласти dV = r2drsinαdαdφ. Щоб обчислити другий доданок, замінимий в ньому порядок інтеграції:



Інтеграл



якщо eiSrcosα = ρе (r), тобто він може розглядатися як потенціал, створюваний в точці r електричним зарядом, розподіленим в просторі з густиною ρе (r), З другого боку, потенціал φ(r) пов'язаний з густиною ρе (r), рівнянням Пуассона


Δφ(r) = — 4π ρе(r) = — 4πei S r (55)


Інтегруючи (55) по r, одержимо


φ(r) = 4πei S r /S2 (56)

Отже, (57)


Другий доданок в (53) можна представити у вигляді



Інтегруючи по α і φ і опускаючи індекс при r, одержимо



Атомна амплітуда розсіювання електронів визначається формулою


 (58)

Або  (59)


Використовуючи значення атомних амплітуд розсіювання рентгенівського випромінювання, можна по цій формулі обчислити fe(S) для будь-якого елементу. Звівши (59) в квадрат, одержимо інтенсивність когерентного розсіювання окремим атомом:


 (60)


Підставляючи числові значення постійних, знайдемо


Когерентне розсіювання електронів складається з ядерного і електронного: член, що містить r2, визначає частку інтенсивності розсіювання ядром, член з F2(S) — інтенсивність розсіювання оболонкою атома, нарешті, член, що містить ZF2(S) визначає інтенсивність розсіювання електронною оболонкою і ядром. Загальна інтенсивність розсіювання електронів убуває обернено пропорційно до S4. У разі рентгенівського випромінювання інтенсивність розсіювання спадає обернено пропорційно до S. Зменшення інтенсивності з кутом розсіювання пояснюється тим, що довжина хвилі цих випромінювань менше розмірів атомів. Внаслідок цього відбувається інтерференція хвиль, розсіяних кожним атомом окремо.

Порівняння (60) з (39) показує, що розсіювання електронів тими ж атомами майже в 106 разів більше розсіювання рентгенівського випромінювання. Цим обумовлюється швидкість отримання електронограм. Експозиції електронографічних досліджень вимірюють секундами, тоді як при рентгенографічних — хвилинами і годинами. До того ж для спостереження картини дифракції електронів достатньо узяти плівку в 200—300 Å, тоді як товщина шаруючи речовини при рентгенографічних дослідженнях близько 1 мм.

При розсіянні електронів разом з когерентними, розповсюджуються електрони, що втратили частину своєї енергії унаслідок непружного розсіювання на атомах. Це розсіювання викликає фон, інтенсивність якого обчислюють по формулі


 (61)

де IHK(S) — інтенсивність некогерентного розсіювання рентгенівського випромінювання.

Розсіювання повільних нейтронів на вільному ядрі

Застосування нейтронів для дослідження атомномолекулярної структури речовини засноване на явищі дифракції (розсіювання) цих частинок. Використовують повільні нейтрони з энергией 2 •10-1 — 2•10-3 еВ, що згідно формулі


λ = h/(2mE)1/2 (62)


відповідає довжині хвилі 0,5 — 6,0 Å.

Через відсутність у нейтронів електричного заряду їх розсіювання інше, ніж у рентгенівського випромінювання і електронів. Процес розсіювання нейтронів не залежить від заряду ядер, а визначається їх складом і спином.

Розсіювання нейтронів пояснюється взаємодією їх з ядрами. Воно характеризується ефективним перерізом розсіювання, визначуваним як відношення числа нейтронів, що відхилюють одним ядром за одиницю часу, до числа нейтронів, падаючих за той же час на одиницю площі шаруючи речовини: σ =Δn/n З цього визначення виходить, що σ має розмірність площі. Дійсно, оскільки [Δn] = 1/T, [n] =1/(TL2) то [σ] = L2. Перетин розсіювання нейтронів можна виразити через хвильову функцію падаючих і розсіяних хвиль. Якщо  — хвильова функція падаючої на ядро плоскої нейтронної хвилі, а — хвильова функція сферичної розсіяної хвилі, то згідно сказаному повний переріз розсіювання ядром

 (63)


де fn — амплітуда когерентного розсіювання нейтронів. Оскільки fn має розмірність довжини, то її називають також довжиною розсіювання. Відмітною особливістю розсіювання повільних нейтронів є ізотропна по всіх напрямах, незалежність його перетину від енергії налітаючих нейтронів. Це пояснюється тим, що довжина хвилі повільних нейтронів (λ≈10-10 м) велика в порівнянні з радіусом дії силового поля ядра (r ≈ 10-15 м), а їх енергія мала в порівнянні з енергією зв'язку усередині ядра.

Для детальнішої характеристики взаємодії нейтронів з ядром вводять поняття диференціального переріза розсіювання dσ, визначуваного як кількість нейтронів, розсіяних усередині тілесного кута dΩ. Диференціальний переріз залежить від кута розсіювання. Дійсно, якщо на ядро, що покоїться, направити пучок нейтронів, то залежно від того, на якій прицільній відстані від ядра вони пролітають, кут їх розсіювання буде неоднаковий. Деякі налітаючі нейтрони розсіваються під кутом, близьким до 180°, інші — під дуже малими кутами.

Отримання і інтерпретація даних по розсіянню нейтронів з метою визначення структури речовини засновані на вимірюванні диференціального переріза розсіювання залежно від кута θ і енергії En налітаючих нейтронів.

Дослідження показують, що взаємодія нейтрона з речовиною може привести не тільки до розсіювання, але і до захоплення його ядром і утворенню проміжного ядра з подальшим випуском нейтрона. Який з цих процесів переважає, залежить від енергії падаючого нейтрона і властивостей ядра.

Отже, в загальному випадку ядерне розсіювання повільних нейтронів є накладенням потенційного і резонансного розсіювання. Загальна амплітуда розсіювання без урахування спину ядра представляється у вигляді двох доданків:

 (64)

де En — енергія падаючого нейтрона; Ep — енергія, якою повинен володіти нейтрон, щоб викликати резонанс в складеному ядрі; i—число ізотопів; Гn — нейтронна ширина енергетичного рівня, пов'язана з вірогідністю розсіювання нейтрона, падаючого на ядро- мішень; Г — ширина резонансного максимуму на половині його висоти, рівної σт (мал. 2.9) (тут σр — перетин при резонансі, тобто при E = Ep).

Диференціальний переріз розсіювання на вільному ядрі визначається по формулі


 (65)


За відсутності у ядра резонансних рівнів, достатньо близьких до енергії падаючого нейтрона, резонансним членом можна знехтувати. В цьому випадку амплітуда розсіювання визначатиметься чисто потенційним членом, який завжди позитивний і рівний радіусу r ядра:

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.