Меню
Поиск



рефераты скачать Перевод на природный газ котла ДКВР 20/13 котельной Речицкого пивзавода

8. Теплотехнический справочник. Том 2. М.: Энергоатомиздат, 1976 г.


1.                ОПИСАНИЕ КОТЕЛЬНОЙ

Паровая котельная оборудована двумя котлами ДКВР 20/13 и котлом ДЕ-16-14-225ГМ с соответствующим вспомогательным оборудованием, водоподготовкой, деаэрационно-питательной, сетевой, подпиточной установками установкой сбора и перекачки конденсата. При котельной имеется мазутное хозяйство емкостью 2х1000м3.

Котельная снабжает теплом и паром собственное производство пивзавода.

Котлы ДКВР 20/13в 1998г. выработали свой ресурс и после капремонта один котел газифицируется, а второй консервируется.


РЕЦЕНЗИЯ


на дипломный проект студента энергетического факультета

Гомельского государственного технического

университета им. П.О. Сухого

Соловьева Виталия Николаевича


на тему: "Перевод на природный газ котла ДКВР 20/13 Речицкого пивзавода."


В данном дипломном проекте произведен расчет по переводу котла ДКВР 20/13 с мазута на природный газ и определены: необходимый расход газа для покрытия заданной нагрузки, параметры тепловой схемы, необходимая поверхность теплообмена экономайзера, т.е. выполнен его конструктивный расчет. Кроме того, выполнен поверочный расчет котлоагрегата, рассчитана схема водоподготовки, а также сделан выбор основного и вспомогательного оборудования. Для надежной и безопасной эксплуатации котлоагрегата разработаны схемы автоматического контроля и регулирования процессов. В проекте отражены вопросы техники безопасности и охраны окружающей среды, а также на основе сметно-финансовой документации произведен расчет основных технико-экономических показателей, сделан сравнительный анализ работы котла на мазуте и газе, на основе которого определен экономический эффект.

Следует отметить достаточно хороший уровень технической подготовки дипломника и умение использовать свои знания при решении поставленных практических задач, а также хорошее качество графических разработок и оформление расчетно-пояснительной записки на ПЭВМ.

Соловьев В.Н. освоил технику инженерного конструирования и расчетов, подготовлен для работы по специальности на производстве, в проектных и научно-исследовательских организациях.

Оценка проекта: дипломный проект заслуживает оценки "хорошо".


Начальник ПТО ГТС Ефименко Виктор Александрович



ОТЗЫВ


на студента энергетического факультета

Гомельского государственного технического

университета им. П.О. Сухого

Соловьева Виталия Николаевича


Во время работы над дипломным проектом зарекомендовал себя как старательный студент, проявил активность и инициативу в сборе материала.

 Показал хорошие знания и навыки по всем разделам проекта. Проявил творческий подход к выполнению дипломного проекта. Благодаря полученным знаниям может считаться готовым к серьезной инженерной работе.

Полученное задание по дипломному проекту выполнил качественно и в срок.

Заслуживает оценки «хорошо».

Дипломник Соловьев В.Н. заслуживает присвоения квалификации инженер-теплоэнергетик.


Руководитель проекта ассистент кафедры Иванова Е.М.

"Промышленная теплоэнергетика и экология"

Экология.


Общие положения

 Газ не содержит твердых примесей, связанного азота и практически не содержит серы, за исключением поставок газа, не прошедшего стадий очистки на газоперерабатывающем предприятии, или когда сжижаются попутные газы, технологические сбросные газы нефтехимического или металлургического производства.

 Отсюда следует, что борьба с выбросами оксидов азота часто является единственным средством, позволяющим обеспечить чистоту атмосферы в районе расположенного теплоэнергетического объекта, работающего на газу.

 Концентрация оксидов азота в дымовых газах при сжигании природного газа в крупных котлах (производительностью по пару 210-420 т/ч) составляет обычно 0,4-0,8 г/м3 (в пересчете на диоксид NO2) , а в мощных энергетических котлах может достигать 1,5 г/м3 . В дымовых газах небольших отопительных и промышленных котлов содержится меньше оксида азота ( 0,1-0,5г/м3), но дымовые трубы, которыми оснащают такие котельные, имеют обычно столь малую высоту, что приземная концентрация Nox часто превышают санитарные нормы. В отличие от молекулярного азота N2, который составляет почти 79% атмосферного воздуха, оксиды азота содержатся в атмосфере в значительно меньших количествах, но, несмотря на это, роль их в жизни человека весьма существенна.

 Оксиды азота обычно классифицируются в зависимости от степени окисления азота. При соединении азота с кислородом по мере увеличения его валентности образуются гелиооксид N2О, оксид NO, азотистый ангидрид N2O3,

диоксид NO2, тетраоксид диазота N2O4 и азотный ангидрид N2O5.В проблеме охраны атмосферного воздуха наибольшее практическое значение имеют оксид и диоксид азота, сумму которых часто обозначают как NOX . Другие оксиды азота не считаются важным с биологической точки зрения или их присутствие в земной атмосфере ничтожно мало вследствие неустойчивости этих соединений.

 Оксид азота NO – малоактивный в химическом отношении бесцветный газ, лишенный запаха и плохо растворимый в воде. При комнатной температуре и атмосферном давлении растворимость NO составляет лишь 0.047 г/см3, с повышением температуры растворимость падает. Диоксид азота NO2,более активен, он красно-бурого цвета и отличается резким запахом.

 Главной проблемой, возникающей в результате присутствия в воздухе оксидов азота, является их токсическое воздействие на здоровье людей. Установлено , что даже кратковременное (до 1 ч) воздействие диоксида азота в концентрации 47-140 мг/м3 может вызвать воспаление легких и бронхит, а при концентрации 560-940 мг/м3 велика вероятность летального исхода в результате отека легких.

 Повышенные концентрации оксидов азота в воздухе воздействуют не только на людей, но и на растительный мир ; по данным американских исследователей, при концентрациях от 280 до 560 мкг/м3 наблюдались повреждения томатов и бобовых.

 Основным источником выброса оксидов азота в атмосферу является сжигание ископаемого топлива стационарными установками при производстве теплоты и электроэнергии. Большую роль, особенно в городах , играют также выбросы автотранспорта и некоторых промышленных предприятий ( заводов по производству азотной кислоты, взрывчатых веществ и т.д. ).

 Важнейшей сферой борьбы с загрязнением атмосферы оксидами азота является энергетика.

 Для оценки перспектив загрязнения атмосферы токсичными продуктами сгорания органического топлива важно правильно оценить ожидаемый прирост потребления первичной энергии, а также рост потребления тех энергоносителей. Таковыми являются нефть и нефтепродукты , используемые для сжигания , природный газ , а так же твердые топлива .

 На выходе из дымовой трубы состав окислов азота почти не изменяется по сравнению с топочной камерой, т.е состоит из NO,и только в атмосфере может происходить процесс его постепенного доокисления .

 Наибольший выход окислов азота характерен для высококалорийных сортов топлива ( мазут, каменный уголь, природный газ ).

 Из анализа влияния основных факторов на образование окислов азота выступают методы их подавления в топочной камере.

 При внедрении мероприятий, рассчитанных на снижение образования оксидов азота, приходится учитывать, что некоторые из них могут увеличить содержание других, не менее опасных загрязнителей. В частности при некоторых режимах сжигания газа образуются канцерогенные продукты: бензаперен и другие полициклические ароматические углеводороды. Концентрация бензаперена в дымовых газах при полной нагрузке газовых котлов составляет 1-10 мкг/100м3, причем нижнее значение соответствует крупным энергетическим котлам, а верхнее- отопительным котлам. Если учесть, что среднесуточная предельно-допустимая концентрация бензаперена в воздухе равна 0,001 мкг/м3, то становится ясным, что при нормальных условиях работы котла токсичность дымовых газов определяется в основном содержанием в них оксидов азота, и только при частичных нагрузках, главным образом, на отопительных блоках, или при нарушении нормальных режимов горения суммарная относительная токсичность продуктов неполного сгорания может оказаться сопоставимой с токсичностью оксидов азота.

 Простейшим мероприятием, снижающим максимальный уровень температуры в топке, является уменьшение нагрузки котла. Многочисленные измерения, проведенные на котлах различной мощности с горелками разных конструкций, показали, что зависимость концентрации Nox от нагрузки котла близка к степенной. Снижение нагрузки котла сопровождается снижением температур в топке за счет уменьшения объёмного тепловыделения и температуры подогрева воздуха. Снижение выходных скоростей в горелках также оказывает определенное влияние на образование Nox.

 Понятно, что снижение нагрузки котла нельзя рассматривать в качестве мероприятия по снижению выбросов оксидов азота (за исключением, может быть, случаев особо не благоприятных метеорологических условий, продолжительность которых довольно ограничена), однако влияния теплового напряжения зоны активного горения на образование оксидов азота может быть использовано конструкторами при создании новых котлов на природном газе.

 Еще одним простейшим средством снижения температурного уровня, а следовательно, и концентрации оксидов азота в дымовых газах является осуществление рециркуляции дымовых газов. При сжигании газа, когда отсутствуют слабозависящие от температуры топливные NOx ,эффективность рециркуляции газов весьма велика.

 При рециркуляции дымовых газов через горелки уменьшается также концентрация кислорода, что приводит к дополнительному снижению образования NOx . Если же подавать газы рециркуляции через шлицы в под топки, как это иногда делается для регулирования температуры промежуточного перегрева при снижении нагрузки, то их влияние на выбросы оксидов азота будет незначительно.

 Дальнейшее увеличение рециркуляции уже менее эффективно. Ограниченность применения этого метода снижения выбросов оксидов азота объясняется тем, что рециркуляция дымовых газов снижает экономические показатели (возрастают потери с уходящими газами и расход электроэнергии на собственные нужды). В тех случаях, когда рециркуляцию газов необходимо производить на уже действующих котлах, появляются дополнительные трудности, связанные с установкой дымососа рециркуляции и коробов для подачи дымовых газов к горелкам.

 Еще одним недостатком этого метода являются опасное возрастание концентрации бензапирена по мере увеличения рециркуляции дымовых газов.

 Снижение максимальной температуры в топочной камере, а следовательно, и концентрации оксидов азота, можно обеспечить увеличением теплоотвода, например за счет установки двусветного экрана или других тепловоспринимающих поверхностей нагрева в зоне интенсивного горения.

 Снижение температурного уровня за счет ввода влаги в зону горения является одним из возможных путей сокращения выбросов оксидов азота при сжигании природного газа. При этом эффективности метода зависит не только от количества вводимой в топку влаги, но и от способа ввода, а также от коэффициента избытка воздуха в топочной камере.

 Как и в случае сжигания угля или мазута, простейшим методом уменьшения концентрации оксидов азота в продуктах сгорания газа является снижение избытка воздуха, подаваемого через горелки . Сказанное относится только к тому диапазону избытков воздуха, который применяется обычно в энергетических котлах (1,1-1,2) . В случае более высоких a снижение температуры в топочной камере оказывает большее влияние на образование оксидов азота и в результате увеличение избытка воздуха сверх a=1,2 снижает концентрацию NOx в дымовых газах.

 Снижение избытка воздуха возможно лишь до тех пор, пока это не приводит к интенсивному росту продуктов неполного сгорания, когда не только уменьшается экономичность топочного процесса, но и создается опасность загрязнения атмосферы другими веществами, не менее вредными, чем оксиды азота.

 При многоярусном размещении горелок эффективным средством снижения выбросов оксида азота может оказаться нестехиометрическое сжигание.

 Другим методом нестехиометрического сжигания является ступенчатое сжигание. При этом на котлах для подачи воздуха, необходимого для полного сгорания, как правило, устанавливают отдельные горелки (обычно-верхнего яруса), если через остальные горелки удается подать количество топлива, необходимое для работы котла с номинальной нагрузкой.

Расчет выбросов оксидов азота

В условиях высокотемпературного горения топлива азот воздуха становится реакционноспособным и, соединяясь с кислородом, образует оксиды. Кроме того, образование оксидов азота в процессах горения может происходить за счет разложения и окисления азотосодержащих соединений, входящих в состав топлива. Всего азот с кислородом может образовывать шесть соединений:


N2O,NO,N2O3,NO2,N2O4,N2O5.


Наиболее устойчивым оксидом является NO2 ,в который могут переходить и другие оксиды азота, поэтому установленные нормы ПДК даются для суммы всех оксидов в пересчете на NO2 . В дымовых газах котлоагрегатов оксиды азота обычно состоят на 95-99% из оксида азота, 1-5% составляет диоксид азота, доля других оксидов азота пренебрежимо мала.

 Массовый выброс оксидов азота в пересчете на NO2 (т/г, г/с) в атмосферу с дымовыми газами котла вычисляется по формуле :


MNO2=0,34×10-7kBQрн(1-q/100)12


где1- коэффициент, учитывающий влияние на выход оксидов азота качества сжигаемого топлива (содержание Nг ), принимается равным 0,8;

k- коэффициент, характеризующий выход оксидов азота ,кг/т условного топлива;

2- коэффициент, учитывающий конструкцию горелок (для вихревых горелок 2=1);


 Коэффициент k для котлов паропроизводительностью менее 70 т/ч при сжигании мазута и газа определяется по формуле:

k=3,5Dф/70,


 где -фактическая паропроизводительность котла;

Принимается Dф=0,95D ,

 где D -номинальная паропроизводительность котла

 

 Тогда [2]:


k=3,5×,95×20/70=0,95


MДКВР-20/13NO2=0,34×10-7×9×386×7346×372× г/с


Расчет выбросов оксидов углерода.

В недостаточно совершенных топочных устройствах или при неналаженном режиме сжигания топлива часть его горючих не окисляется до конечных продуктов, а образуются продукты неполного сгорания. Наиболее вероятным продуктом неполного сгорания всех видов топлива является окись углерода CO.

Массовый выброс оксидов углерода (г/с) в атмосферу с дымовыми газами котла вычисляется по формуле


MCO=0,001CCOB(1-q4/100)


Где CCO- выход оксида углерода при сжигании топлива (кг/тыс.м3)

CCO=q3RQрн/1013


гдеq3- потери теплоты от химической неполноты сгорания топлива, 0,5 %;

R- коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, обусловленную содержанием в продуктах неполного сгорания оксида углерода. Для газа R=0,5;

Qрн- теплота сгорания натурального топлива ,кдж/м3 ;

q4- потери теплоты от механической неполноты сгорания топлива, %

Значения q3,q4 принимаем по данным укрупнённого расчета котлоагрегата.


CCO=0,5×0,5×37346/1013=9,21 кг/тысм3

MДКВР-20/13CO=0,001×21×386=0,003 г/с;


Определение высоты трубы производится по формуле


 


Где pп - поправочный коэффициент для расчета многоствольных труб, зависящий от числа стволов в трубе , отношения расстояния между ближайшими стволами на выходе к диаметру ствола (на выходе) и от угла наклона выходного участка выходного участка ствола к вертикальной оси . Для одноствольных труб pп =1,0.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.