Пузыри в жидкости
ОТДЕЛ
ОБРАЗОВАНИЯ ГОМЕЛЬСКОГО ГОРОДСКОГО ИСПОЛНИТЕЛЬНОГО КОМИТЕТА
Государственное учреждение
образования
«Гимназия №71 г. Гомеля»
Конкурсная работа
«Пузыри в жидкости»
Исполнитель: Мурашко Вячеслав
Игоревич,
ученик 9 А класса
Руководитель: Синюто Алла Николаевна,
учитель физики
Государственного учреждения образования
«Гимназия №71 г. Гомеля»
Гомель
2010
Оглавление
Введение
1.
Пузырек всплывает
в жидкости
2.
Модельный опыт о
флотации
3.
О «мягких» и
«твердых» пузырьках в жидкости
4.
Газовый пузырек у
границы между жидкостями
5.
Кавитация
Заключение
Список использованных источников и
литературы
Введение
Цель данной работы - изучение тех процессов, которые
происходят или могут происходить с пузырями в жидкости и понять как общие
законы физики обнаруживают себя в конкретных явлениях. При выполнении работы
применялись следующие методы исследования: анализ различных источников
информации; самостоятельное выполнение различных опытов, выявляющих различные
свойства пузырьков. Объект исследования – пузыри, которые расположены в
жидкости.
Газовый пузырек в жидкости!
Ситуация общеизвестная и как будто совершенно понятная: пузырек всплывет, у
поверхности вскроется, содержащийся в нем газ уйдет в паровую фазу вблизи
поверхности жидкости. Понятно, почему это происходит: поднятие пузырька сопровождается
опусканием центра масс жидкости с пузырьком. После вскрытия газового пузырька уровень
жидкости понизится на некоторую величину, а это выгодно, как бы мала она ни
была. Это упрощенный рассказ о судьбе пузырька в жидкости. Есть множество
процессов и явлений, происходящих с ним и зависящих и от его размера, и от
свойств жидкости, и от размера и формы сосуда, в котором жидкость находится, и
от сорта газа, которым заполнен пузырек, и от много другого.
Пузырек оказывается
главным участником очень важных технологических процессов и физических явлений.
Эти процессы могут быть организованы лучшим образом, а явления использованы с
наилучшим успехом, если будут поняты физические закономерности, управляющие
поведением пузырей.
Речь идет о флотации,
процессе, при котором руда освобождается от пустой породы, о кавитации –
процессе появления несплошностей в жидкости вследствие местного понижения
давления (эти несплошности превращаются в пузырьки, которые, схлопываясь, могут
изъязвлять и разрушать металл, находящийся в жидкости, в частности гребные
винты кораблей), о барботаже – продувании сквозь жидкость газовых пузырьков (их
поток приводит к совершенному перемешиванию жидкости, а иной раз используется
для ее равномерного прогрева).
1. Пузырек всплывает в
жидкости
Полагая, что пузырек сохраняет
сферическую форму, запишем выталкивающую его архимедову силу , которая обусловлена различием плотностей
жидкости и газа в пузырьке .
Она определяется известной формулой:
.
В записанной формуле
учтено, что .
Обсудим, как под
действием архимедовой силы всплывает пузырек, который, двигаясь медленно,
сохраняет сферическую форму.
Рисунок 1 Схемы
ламинарного (а) и турбулентного обтекания жидкостью движущегося в ней пузыря
Вокруг пузырька возникают
потоки, которые перемещают жидкость от лобовой поверхности пузырька к его
тыльной поверхности. Чем дальше от пузырька, тем с меньшей скоростью протекает
жидкость, тем менее она «осведомлена», что в ней движется пузырек. В
действительности, течет жидкость, а мы видим результат этого течения -
всплывание пузырька. Поэтому скорость его всплывания должна зависеть и от того,
как движется жидкость, и от его физических свойств.
«Медленным» будем называть такое движение
пузырька, при котором перетекание воды от его лобовой к тыльной поверхности не
сопровождается появлением завихрений, вода течет спокойно, как бы послойно и
слои не перемешиваются между собой. Физики говорят «ламинарно». Путь, по
которому движутся слои жидкости можно изобразить линиями (см рис 1. а). При ламинарном
течении они не изламываются, взаимно не пересекаются и не пересекают сами себя.
В потоке не появляются вихри. Соприкасающиеся слои жидкости получают информацию
друг о друге вследствие их взаимного трения. При таком обтекании пузырька
жидкостью установившаяся скорость его ламинарного всплывания должна зависеть от вязкости жидкости , от радиуса пузырька R и от силы F, действующей на пузырек.
Выясним связь между
величинами , , R и F.
Естественно предположить,
что скорость пропорциональна выталкивающей силе F, и тем меньше, чем больше радиус
пузырька R и вязкость воды : .
Так как здесь обсуждается
случай очень медленного всплывания пузырька в вязкой жидкости, то естественно
предполагать, что энергия, передаваемая всплывающим пузырьком обтекающей его
жидкости, главным образом расходуется на преодоление вязкого трения, а не
придание жидкости кинетической энергии, которая должна зависеть от массы
жидкости, а значит, и от ее плотности.
Перепишем нашу формулу в
виде , учтем что , , , ,
и потребуем, чтобы размерность левой и правой частей нашей формулы совпадали.
Мы убедимся, что , , , т.е. то, что и записано в нашей формуле.
Точная формула, которую
физики получают строго, от нашей отличается лишь множителем . Итак:
.
В литературе эту формулу
именуют «формулой Стокса», установленной Джорджем Габриэлем Стоксом (1819 –
1903) в 1851г. Ею пользуются и метеорологи, изучая движение капель тумана, и
химики, изучая осаждение мелких частиц в жидкостях, и гидробиологи, изучающие
осаждение ила. Формула Стокса была использована Р. Милликеном в его
классических опытах по определению заряда электрона.
Записанную формулу
полезно прочесть не только слева направо (), но и
справа налево:
.
Такое прочтение
обнаруживает ранее скрывавшиеся в формуле грани описываемого ею явления. Так
как пузырек всплывает с постоянной скоростью, то, согласно закону Ньютона,
сила, вынуждающая его движение, , и сила, тормозящая его
движение, , между собой равны. А это означает, что , т.е. пузырек, всплывающий в режиме
медленного движения, испытывает со стороны жидкости действие силы сопротивления,
которая пропорциональна его скорости. Мы пришли к этому заключению, не отступая
от представления о том, что всплывание медленное, что обтекание жидкостью
пузырька ламинарное, без завихрений (именно это отражает индекс «л» при ). Это заключение и может явиться основанием
для ответа на вопрос, какое всплывание пузырька в воде следует считать
медленным: такое, при котором
.
Воспользуемся знанием
величины в случае свободного всплывания пузырька и
запишем нашу формулу в окончательном виде:
.
Так как для воды вязкость
, плотность , а
ускорение свободного падения всегда , то скорость всплывания . Пузырек, радиус которого , всплывает медленно, со скоростью . Со дна до верха заполненного чайного
стакана, высота которого , такой пузырек будет
всплывать за время ! Так как ,
то пузырьки покрупнее всплывут за меньшее время.
Опыт по свободному
всплыванию «маленького» пузырька в жидкости можно использовать для определения
его размера, если известна вязкость жидкости.
Все наблюдали, что при
сильном напоре воды в водопроводной системе, стакан наполняется молочно-белой
водой, которая со временем просветляется. Мутность воды обусловлена огромным
количеством взвешенных в ней газовых пузырьков, рассеивающих свет. А
просветление воды наступает вследствие всплывания пузырьков, о чем убедительно
свидетельствует появление именно у дна стакана расширяющегося просветленного
слоя. Очень легко заметить, как со временем увеличивается ширина просветленного
слоя. Располагая лишь часами и линейкой можно убедиться, что граница между
мутной и прозрачной зоной движется с постоянной скоростью, и определить эту
скорость.
Рисунок 2 Постепенное
просветление стакана с газированной водой вследствие всплывания пузырьков
Этот опыт был проделан и
найдено, что м/c. Согласно Стоксу, с такой скоростью
должен всплывать пузырек, радиус которого м.
В совсем простом опыте со
стаканом обычной воды, веря формуле Стокса, фактически измерили размер не
видимого глазом пузырька. Ведь мы не видели отдельные пузырьки, а лишь
наблюдали эффект рассеяния света множеством пузырьков и расширение у дна
стакана прозрачного слоя воды, освободившегося от всплывших пузырьков.
Если захотим проверить,
как формула Стокса согласуется с опытом, всякий раз наблюдая пузырек покрупнее,
мы убедимся, что начиная с некоторых размеров сферических пузырьков формула
Стокса начинает отказывать. Скажем, пузырек, радиус которого м, должен по Стоксу всплывать со скоростью м/с, а этого не происходит, он движется
существенно медленнее.
Начиная с некоторой
скорости всплывания могло бы оказаться, что при ламинарном обтекании жидкостью
пузырька от его лобовой поверхности не будет успевать уводиться нужное
количество жидкости. Тогда обязан объявиться иной характер движения жидкости,
при котором быстрое перемещение пузырька станет возможным. Этот «иной характер»
движения может оказаться следующим. От лобовой поверхности пузырька подгоняемая
им жидкость перемещается быстро в направлении движущегося пузырька. В таком
режиме движения жидкость в недостаточной степени затекает в «тыл» движущегося
пузырька. И в его «тылу» могут возникнуть пустоты, разрывы, завихрения – все
то, что в совокупности именуют «турбулентным» течением жидкости. На рис. 1 б) это
изображено. В отличие от этого (рис. 1 а), на котором изображено ламинарное
движение на рис. 1б линии искривляются, изображая вихри. Такому движению
жидкости свойственна не упорядоченность вязкого течения, не взаимные
соскальзывания соприкасающихся слоев жидкости, а образование завихрений в
«тылу» движущегося пузырька. Упорядоченное вязкое течение сменяется вихревым,
турбулентным.
Обсудим связь между
выталкивающей силой и скоростью всплывания пузырька для случая, когда обнаружится второй
турбулентный, характер движения жидкости у пузырька. Двигаясь со скоростью и пройдя путь l, пузырек передаст массе жидкости энергию
.
Эту энергию жидкость
растратит на образование и движение завихрений. В конечном счете она
превратится в тепло. Так как при равномерном движении
,
то
.
Величину мы знаем и, следовательно, легко получим
приближенную формулу, определяющую :
.
Последнюю формулу можно
было бы получить, пользуясь соображениями о размерностях.
Вывод: при свободном
всплывании пузырька в режиме ламинарного течения воды ,
а в режиме турбулентного течения . Это означает, что с
ростом скорости всплывания при турбулентном течении сопротивление жидкости
движению пузырька увеличивается быстрее, чем при ламинарном.
Итак, скорость, при
которой ламинарное обтекание пузырька жидкостью сменится турбулентным, можно
оценить, приравняв силы, тормозящие пузырек, , и
относящиеся к ламинарному и турбулентному течениям. Из такого сравнения
следует, что если выполняется условие , то
пузырек всплывает в ламинарном режиме, а если -
турбулентном. Для воды м2/с, а для
воздуха м2/с. Пузырьки, имеющие радиус м, всплывают со скоростью м/с, т.е. м2/с,
что существенно меньше, чем м2/с. Такие
водяные пузыри всплывают «ламинарно». А мыльные пузыри, радиус которых м, падают со скоростью м/с. Значение м2/с
существенно больше, чем м2/с и,
следовательно, такие мыльные пузыри падают в турбулентном режиме.
2. Модельный опыт о
флотации
Этот опыт иллюстрирует
физическое явление, на котором основан технологический процесс, именуемый
флотацией. Газовые пузырьки в этом процессе играют важную роль.
Флотация, а точнее
флотационное обогащение - это процесс разделения совокупности двух видов мелких
твердых частиц, отличающихся смачиваемостью той жидкостью, в которой они
находятся, чаще водой. На поверхности частиц, которые будут плохо смачиваться
жидкостью, будут закрепляться газовые пузырьки. Говорят так: образуется флотационный
агрегат – частица и прилипшие к ней пузырьки газа. Если средняя плотность
такого агрегата меньше плотности жидкости, он будет всплывать, вынося на поверхность
жидкости частицы твердой фазы. Те же частицы, которые хорошо смачиваются
жидкостью не будут на себе задерживать пузырьки газа, не сформируют
флотационный агрегат, и, следовательно, осядут на дно. В этом процессе частицы
первого и второго вида разделятся.
Принципиальная
возможность разделения твердых частиц различных сортов с помощью всплывающих
газовых пузырьков, широко используется для разделения частиц пустой породы в
измельченной руде от частиц, богатых металлом. Именно поэтому явление флотации
лежит в основе технологического процесса, используемого в горнорудных
обогатительных фабриках.
К самой
идее флотации привела не теория, а внимательное наблюдение случайного факта. В
конце прошлого века американская учительница (Карри Эверсон), стирая
загрязненные маслом мешки, в которых хранился раньше медный колчедан, обратила
внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и
послужило толчком к развитию способа флотации.
Возникают следующие
вопросы. Как образуются газовые пузырьки во флотационной ванне с жидкостью и
частицами твердой породы? При каком соотношении объемов газовых пузырьков и
твердых частиц образуемые ими флотационные агрегаты будут всплывать?
Введение газовых
пузырьков в объем флотационной волны осуществляется многими различными
приемами. Иногда просто продуют воздух через сетки с малыми отверстиями, иногда
в объеме ванны проводят химическую реакцию, при которой возникает большое
количество газа, например углекислого. Существует так называемая
электрофлотация, при которой в ванне образуются газообразные водород и кислород
при пропускании тока через воду. Все эти приемы дают возможность регулировать
интенсивность процесса формирования газовых пузырьков.
Теперь о флотационном
агрегате. Он будет всплывать при условии, если его средняя плотность будет меньше плотности жидкости , т. е. . Из
записанного неравенства легко получить условие всплывания флотационного
агрегата, в состав которого входит твердая частица, имеющая массу , объем (плотность
), и газовые пузырьки, суммарный объем
которых . Очевидно,
,
и, следовательно, условие
всплывания можно записать в виде
.
Записанное условие
всплывания флотационного агрегата выполняется тем лучше, тем меньше объем
частиц твердой фазы.
Для проведения модельного
опыта требуется изготовить полые стеклянные шарики, которые в воде не падали
стремительно, а медленно тонули, так как их плотность была бы немногим больше плотности
воды. Шарики были крупными ( мм). А далее все
предельно просто. Брали два шарика, один из них тщательно протирали жирными
пальцами, а поверхность другого обезжиривали спиртом. После такой обработки на
первом должны оседать газовые пузырьки, а на втором – нет.
Первый моделирует
вещество гидрофобное, не любящее воду, не смачиваемое водой, а второй –
гидрофильное, любящее воду, смачиваемое ею. Шарики клали на дно стакана и
заполняли стакан обычной газированной минеральной водой, из которой выделялись
газовые пузырьки. На шарике с жирной поверхностью начинали оседать пузырьки,
образовался флотационный агрегат и вскоре шарик всплывал.
В описанной постановке
опыта, когда всплывает один шарик, поверхность которого заселена пузырьками,
наблюдается любопытное сопутствующее явление. В момент, когда шарик касается
поверхности, некоторые пузырьки из числа поднимавших шарик лопаются и он
начинает тонуть. А затем, обогатившись очередной порцией газовых пузырьков,
выделяющихся из воды, он снова всплывает, и цикл повторяется. Легко понять, что
в реальном флотационном процессе, в котором участвует огромное количество всплывающих
частиц, у поверхности жидкости будет возникать слой, обогащенный частицами
определенного сорта, каждый из которых тонуть не будет. Это так называемый слой
флотационной, минерализованной пены. Искусственно или самотеком эта пена
удаляется вместе с содержащимися в ней частицами либо полезного минерала, либо
пустой породы. Технологам приемлемы оба варианта, только бы произошло отделение
частиц минерала, обогащенного полезным ископаемым. Это и было целью процесса.
Страницы: 1, 2
|