p> Внимание! В след-м разделе некоторые вопросы перекрываются. Для
гарантированно-хорошего ответа на экзамене след. ознакомится с всеми 3
вопрсами (? 34, ? 35, ? 36).
(34) В настоящее время конц-я самоорганизации получает все большее
распростран не только в естествознании, но и в соц-но гуманитарных разделах
наук. Большинство наук изучает процесы эволюции систем и они вынуждены
анализировать механизмы их самоорганизации. Мы под самоорганизацией будем
подразумевать явл-я, процесы , при кот. системы (механические, химические,
биологические и т.д.) переходят на все > сложные уровни, характеризуемые
своими законами, кот. не сводятся только к законам предыдущего у-ня. Такие
примеры мы расматривали в предыдущих разделах. Концепция самоорганизации в
настоящее время становится парадигмой. Обычно под парадигмой в науке
подразумевают фундаментальную Т., кот. применяется для объяснения широкого
круга явлений, относящихся к соответствующей облти ислед.. Примерами таких
теорий могут служить классическая механика Ньютона, эволюционное учение
Дарвина или квантовая физика. Сейчас знач. понятия парадигмы еще больше
расширилось, поскольку оно применяется не только к отдельным наукам, но и к
междисциплинарным направл-ям ислед..
(35) Принцип Обратной Связи. Типичным примером таких междисциплинарных
парадигм явл. возникшая полвека назад кибернетика и появившееся четверть в.
спустя синергетика. Под синергетикой в настоящее время подразумевают
область научных ислед., целью кот. явл. выявление общих законмрностей в
процессах образования , устойчивости и разрушения упорядоченных временных и
пространственных структур в сложных неравновесных сист. различной природы
(физических, химических биологических , экологических, социальных).
(36) Синергетика и Кибернетика. Определим, что лежит в основе кибернетики и
синергетики. Кибернетика в основном занималась анализом динамического
равновесия в самоорганизующихся сист.. Она опиралась на принцип
отрицательной обратной связи , сглсно кот всякое отклонение системы
корректируется управляющем устройством после получения сигнала информации
об этом. Мы с вами сталкивались с таким примером, когда расматривали знаки
в уравнениях Максвелла, связывающих магнитные и электрические поля.
Отрицательный знак в законе Фарадея и означал, что воздействие
корректируется в сторону его уменьшения. Другой пример. Сам отец
кибернетики Н.Винер рассказывал, как возникла эта наука. Она возникла,
когда стали изобретать самонаводящиеся зенитные системы. В этих сист.
встретились с такой ситуацией, когда неправильно поданный корректирующий
сигнал приводил к выходу из строя всей системы наведения. В общем речь шла
о том, что в сист-е, развивающейся по заданным законам, связь должна быть
отрицательной. Пояснение вышесказанному дается рис. 5.1. В синергетике
исследуются механизмы возникновения новых состояний, структур и форм в
процесе самоорганизации, а не сохранения или поддержания старых форм. Она
опирается на принцип положительной обратной связи, когда изменение,
возникшее в сист-е, не подавляется или корректируется, а наоборот,
накапливаются и приводят к разрушению старой и возникновению новой системы.
С тчки зрения приведенного Н.Винером примера процес саморазрушения
зенитного комплекса мог быть описан с синергетических позиций. В то время
этот процес считался сугубо отрицательным и его старались подавить. Для хар-
еристики самоорганизующихся процесов применяют различн. термины, начиная от
синергетических и кончая неравновесными и даже автопоэтическими или
самообновляющимися. Однако, все они выражают 1 и туже идею. В дальнейшем у
нас речь пойдет о самоорганизующихся сист., кот. явл. открытыми системами ,
находящимися вдали от тчки термодинамического равновесия. Идеи эволюции
систем (космогонические, биологические, физические) получили широкое
признание в науке. Однако,вплоть до настоящего времени, они формулировались
интуитивными понятиями. Терминологический и научный подход развивается
только в настоящее время. В раних теориях эволюций основное внимание
обращалось на воздействие окружающей среды на систему. Мы > подробно это
рассмотрим в Т. эволюции Дарвина. В дарвинской Т. Т. происхождения новых
видов растений и животных путем ественого отбора главный акцент делался на
среду, кот. выступала в кач. определяющего фактора. Разумеется, внешние усл-
я среды оказывают огромное влияние на эволюцию, но это влияние не в меньшей
степенизависит также и от самой системы, ее состояния и внут.
предрасположенности. Приведем 2 примера. У нас есть водяной пар, при его
охлаждении он переходит в новую структуру в виде кристаллов.Систем >
организованных, чем хаотически двигающиеся молекулы воды. Но, этот процес
как выясняется, может происходить только тгда, когда в самой среде есть
дополнительные центры кристаллообразования. Т. е. необходимым усл. явл.
сама среда и ее взаимосвязи. Другой пример. Лазеры. В лазерах хаотическое
спонтанное излучение превращается в строго организованное индуцированное,
следствием чего и появл. монохроматическое излучения. В этих примерах мы не
использовали точные хар-еристики упорядоченности или самоорганизованности
структуры. В след-м разделе мы введем меру упорядоченности структуры
энтропию и свяжем с ней протекание процесов. С тчки зрения парадигмы
самоорганизации стало ясным, что усл. развития не только живых, но и
динамических систем вообще явл. взаимдействие системы и окружающей среды.
Только в результате такого взаимдейст. происходит обмен веществом, энергией
и информацией между системой и ее окружением. Благодаря этому возникает и
поддерживается неравновесность, а это в свою очередь приводит к спонтанному
возникновению новых структур. Таких как кристаллы или лазерное излучение.
(34) Самоорганизация как основа эволюции. Тким обрзом , самоорганизация
возникает как источник эволюции систем, так как она служит началом процеса
возникновения качественно новых и > сложных структур в развитии системы.
Чтобы понять, почему самоорганизация выступает в основе эволюции,
необходимо сказать несколько слов о флуктуациях и хаосе. Рассмотрим такую
систему, как газ. Молекулы газа двигаются случайно, хаотично. Однако, в
опытах с броуновским движением мы видим, что случайные, хаотичные движения
молекул (микросистем) могут привести и к коллективному движению
макроскопических частиц. Флуктуации представл. собой случайные отклонения
системы на микро уровне. Но результат их действия может сказаться и на
макро уровне, причем непредсказуемым обрзом. В критич. точке эволюции ,как
правило, открывается несколько возможностей. Какой путь при этом выберет
сист., в значит. степени зависит от случайных факторов. И в целом поведение
системы нельзя предсказать с полной достоверностью. Мы с вами расматривали
этот вопр в разделе Физика возможного. Мы даже указали границы случайности
в поведении системы. В микромире выбор поведения системы определен только с
точностью до соотношения неопределенностей Гейзенберга. Фактически мы
показали, что в самой сист-е заложен хаос, неопределенность. И эта
неопределенность в критических точках поведения системы может привести к
развитию новой структуры с не предсказанными свойствами.
(37) ЕСТЕСТВЕННО - НАУЧНАЯ И ГУМАНИТАРНАЯ КУЛЬТУРЫ Ученые и
специалисты насчитывают > 170 определений понятия культура. Это
свидетельствует о универсальности даного явл-я человского общства.
Понятием культура обозначают и обычные явл-я, и сорта растений и
умственные кач-ва чела, и образ жизни, и систему положительных ценностей и
так далее. В таком контексте все созданное челом есть культура. Мы
используем одно из определений культуры, кот. связано с ее инструментальной
трактовкой. Культура - это сист. ср-в человской деят-ти, благодаря кот.
реализуются действия индивида, групп, человечества в их взаимодействии с
природой и между собой. Эти ср-ва создаются людьми , постоянно меняются и
совершенствуются. Принято выделять 3 типа культуры: материальную,
социальную и духовную. Материальная культура -совокупность ср-в бытия чела
и общства. Она вкл разнообразные факторы: орудия труда, технику, благсост-е
чела и общства. Социальная культура - это сист. правил поведения людей в
различн. видах общения. Она вкл этикет, профессиональную, правовую,
религиозную и т. д. разновидности деят-ти чела. Более подробно
содержательная часть 1ой и 2й культур изучается в других дисциплинах.
Духовная культура - это составная часть культурных достижений человечества.
Осн. виды духовной культуры - мораль, право, мировоззрение, идеология, иск-
во, наука и т.д. Кажд из этих видов духовной культуры сост. из относит.
самостоятельных частей. Эти части взаимосвязаны и относятся к духовной
культуре человечества. Под наукой в настоящее время понимают ту сферу
человской деят-ти, ф-я кот. - выработка и теоретич систематизация
объективн. знаний о действит-ти. Сист. наук условно делится на ественые,
общественные и технические науки. В науке принято выделять систему знаний о
природе - естествознание, кот. явл. предметом естественнонаучной культуры и
систему знаний о позитивно значимых ценностях бытия индивида, групп , гос-
ва, человечества - гуманитарные науки или гуманитарную культуру. До того,
как наука оформилась в самостоятельную часть культуры человечества, знания
о природе и ценностях общ-веной жизни входили в иные состояния духовной
культуры : практ. опыт, мудрость, народная медицина, натурфилософия и т.д.
Взаимосвязь естественнонаучной и гуманитарной культур закл. в след-м: * они
имеют единую основу, выраженную в потребностях и интересах чела и
человечества, в создании оптимальных усл-ий для самосохранения и
самосовершенствования; * осуществляют взаимообмен достигнутыми
результатами; * взаимно координируют в процесе развития человечества; *
явл. самостоятельными ветвями единой системы знаний науки и духовной
культуры в целом. Мы являемся свидетелями того, как социологи, юристы,
экономисты, менеджеры и друг. специалисты - гуманитарии начинают применять
в своей работе системный подход, идеи и методы кибернетики и Т. информации,
знание фундаментальных законов естествознания и в частности физики. Поясним
вышесказанное примерами из практики. Юрист разбирает дело о столкновении
судов. Конечно, ему нужно знать законы, приняты в мировой практике
судовождения. Но, с другой стороны, if он не знает, что такое маса, радиус
поворота, скорость, ускорение и т. д. , он не сможет реально применить
свои профессиональные знания. Социолог изучает общ-ное мнение путем опроса.
Но как он сможет оценить степень достоверности результатов, if не имеет
представление о Т. вероятности и Т. погрешностей. Без знания этих разделов
ественых наук, результаты его предсказаний не будут представлять
практической цености. Менеджер рекламирует изделие какого - то предприятия.
Хорошо известно, что на выставках или просмотрах первые вопросы всегда
касаются техн. сторон изделия. Конечно, полностью ответить на такие вопросы
может только специалист, имеющий хорошую фундаментальную естественнонаучную
подготовку. Однако разбираться в этих вопросах должен и менеджер.
Существует и другая сторона рассматриваемого вопроса. Наука часто
обвиняется в тех грехах, в кот. повинна не столько она сама, сколько та
сист. институтов, в рамках кот. она функционирует и развивается. В
настоящее время очевидно, что развитие науки может приводить к
отрицательным последствиям влияющем на все челоство в целом. Актуальным
становится вопр о соц. ответственности всех людей, а не только ученых за
возможность юзания из открытий и достижений. В настоящее время
сформировалась направл., называемое этикой науки, дисциплине, изучающей
нравственные основы научн. деят-ти. В кач. примера можно привести пример из
истор. 2й мировой войны. Р.Оппенгеймера называют отцом атомной бомбы. Он
являлся координатором и руководителем проекта создания атомной бомбы. Она
была создана и испытана сначала в Неваде, а потом и в Хиросиме и Нагасаке.
Позднее Оппенгеймер, осознавая тяжесть ответственности, ушел из проекта и
стал заниматься деятельностью, направленной на предотвращение юзания
атомных бомб. Вышесказанное утверждает нас в мысли, что представляется
весьма важным познакомится с осн. концепциями естествознания. Это
необходимо для того, чтобы: во перв., сознательно применять их в своей деят-
ти, во вторых, чтобы получить > ясное и точное представление о современ.
научн. картине мира, кот. дает естествознание. Необходимость применения
естствено научных методов и законов в практической деят-ти гуманитарных
специальностей и привело к постановке того курса, кот. мы будем изучать:
Физика для гуманитариев.
Связь между разделами естествознания. Слово естествознание представляет из
себя сочетание 2х слов: естество (природа) и знание. В настоящее время под
естествознанием подразумевается в основном точное знание о том, что в
природе, во Вселенной действительно есть или по крайней мере возможно.
Первнач. к физике Аристотель относил проблемы устр-ва, происхождения,
организации всего, что есть во Вселенной, даже жизни. Само слово физика,
греческое по происхождению, близко к русскому слову природа. Тким обрзом,
первоначально естествознание называлось физикой. В своем развитии наука
прошла 4 стадии развития. На 1ой стадии формулировались общ.
представл. о природе, окружающем мире как о чем-то целом. В этой стадии
произошло развитие натурфилософии (философии природы) ставшей вместилищем
идей и догадок, кот. к 13-15 векам стали зачатками ественых наук. В 15-17
веках последовала аналитическая стадия - мысленное расчленение и выделение
частностей, превратившая физику, астрономию, химию, биологию действительно
в науки. Позднее, ближе к нашему времени, наступила синтетическая стадия
изучения природы, характеризуемая воссозданием целостной картины мира на
основе ранее познанных частностей. Сегодня пришло время обосновать не
только принципиальную целостность всего естествознания, но пояснить, почему
имено физика, химия и биология стали осн. и самостоятельными разделами
науки о природе. Т.е. в настоящее время осущ-ется целостная интегрально -
дифференциальная стадия развития естествознания, как единой науки о
природе. Все описанные стадии изучения природы по сущ-ву представл. звенья
1ой цепи. Кажд из разделов естествознания прощел через эти стадии.
Рассмотрев в следующей части коротко ист-ю развития физики мы видим, что
она тоже прошла все описанные стадии. Отличие имеется лишь в том, что
описание этапов развития физики мы будем давать с тчки зрения развития
методов подхода к изучаемым явлениям. В физике сейчас также наступает
интеграционная стадия, характеризуемая тем, что проводятся попытки создать
единые Т., объединяющие различн. разделы. Примером тому может служить
попытка создать единую Т. поля. Рассмотрим главные разделы естествознания и
связь между ними. Мы уже говорили о движении материи. В порядке возрастания
сложности мы приводили следующие формы движения: механическую, физическую,
химическую, биологическую, общественную. Все формы движения связаны между
собой. Высшие содержат в себе низшие, составными части, но ни в коем случае
не сводятся только к ним. Например, нельзя ядерные силы свести к
механическим. Различные виды движений, существующих в природе изучают
различн. разделы естествознания: ФИЗИКА, ХИМИЯ, БИОЛОГИЯ, ПСИХОЛОГИЯ и
друг. разделы. В каждом из разделов естествознания имеются свои законы,
кот. не могут быть сведены к законам других разделов, однако, Т.,
описывающие сложные структуры, опираются на Т. и законы для простых
структур. При этом, как правило, по мере усложнения структур и разделов
естествознания их законы становятся менее точными, формулировки
приближаются к кач-веным. Чем ниже уровень раздела естествознания, тем
сложнее и точнее математические формулировки его законов. Наиболее сложны
для понимания законы физики - фундаменте всех ественых наук. В этом разделе
мы попытаемся показать связь физики с другими науками, очерти м круг
фундаментальных задач, возникающих в пограничных областях и на стыке наук.
Однако, мы коснемся связей физики с техникой, физики с пром-тью, физики с
общ-веной жизнью и физики с искусством. Связь с последнем прослеживается на
многих ист-ких примерах, когда выдающиеся скульпторы, архитекторы и
живописцы прошлого были одновремено и крупными учеными. Химия испытывает на
себе влияние физики, пожалуй сильнее, чем любая другая наука. На заре
своего развития она играла важную роль в становлении физики. Эти науки
взаимодействовали очень сильно, они были практически неразделимы. Т.
атомного строения в-ва получила основательное подтверждение имено в
химических опытах. Под Т. неорганической химии подвел черту Д.И.Менделеев
(1834-1907), создав свою периодическую систему химических эл-тов. Эта сист.
выявила немало удивительных связей между различными элементами. Она
предсказала сущ-ние многих тгда еще неизвестных химических эл-тов. Однако,
объяснение системы Менделеева возможно только с опорой на Т. строения
атома, т.е. на физическую Т.. В настоящее время в неорганической химии
остались 2 раздела: физическая химия и квантовая химия. Сами названия этих
разделов говорят о тесной связи с физикой. Другая ветвь химии -
органическая химия, химия веществ, связаных с жизненными процессами. Одно
время предполагали, что органические в-ва столь сложны, что их нельзя
синтезировать. Однако, развитие физики и неорганической химии изменило
ситуацию. В настоящее время научились синтезировать сложные органические
соединения, необходимые в жизненых процессах. Главной задачей органической
химии явл. анализ и синтез веществ, образующихся в биологических сист.,
живых организмах. Отсюда вытекает тесная связь химии и физики с другим
разделом естествознания, с биологией. Изучение живых организмов позволяет
увидеть множество чисто физических явлений: циркуляцию и гидродинамику
протекания крови, давление в сосудах и т.д. Биология - очень широкое поле
деят-ти для приложения физических и химических теорий. Например, как осущ-
ется зрение, что происходит в глазе. Как квант света взаимодействует с
сетчаткой. Однако, эти вопросы не осн. в биологии, не они лежат в сущности
всего живого. Фундаментальные процесы, изучаемые в биологии лежат глубже, в
понимании функционирования клеток, их биохимических циклов. В конечном
итоге, в понимании того, что есть жизнь. Понятие жизни не удается свести
только к хим или физ. процесам. Психология изучает отражение действит-ти в
процессах деят-ти чела и животных. Эта наука лежит на грани ественых и общ-
веных наук. Казалось бы, какая связь может быть у нее с физикой. Давайте
рассмотрим пару примеров. Одной из ветвью психологии явл. физиология
ощущений. Она расм. взаимосвязь между поведением чела и его ощущениями.
Почему красный цвет вызывает тревожные ощущения, а зеленый наоборот.
Недаром запрещающий цвет светофора - красный, а разрешающий - зеленый.
Ответ может дать физика. Днем max излучения солнца приходится на зеленый
цвет. День - самое безопасное время суток, и в процесе эволюции у живых
организмов выработалась положительная реакция на зеленый цвет. В сумерках
max излучения солнца сдвинут в красную область. Сумерки - самое опасное
время суток, когда хищные животные выходят на охоту. Есcно, что в процесе
эволюции выработалось отрицательная реакция на этот цвет. Другой пример из
облти криминалистики, кот. условно также можно отнести к ветви психологии,
поскольку она расм. поведения людей в сложных ситуациях, приводящих к
криминальным случаям. Когда доктор Ватсон спросил, знает ли Шерлок Холмс о
Т. Коперника и о строении солн. системы, Холмс ответил, что наверно знал,
но постарался об этом забыть. Тем не менее, доктором Ватсоном было
установлено, что Холмс обладает глубокими знаниями в облти химии и ряда
разделов физики. Действительно, сейчас ни 1 криминалист не может обойтись
без такого раздела физики, как механика, точнее ее прикладного раздела -
баллистики, а также ряда других. В заключении этого раздела упомянем еще 1
момент, выявляющий связь физики с другими разделами естествознания. Все
приборы, используемые в опытах и экспериментах созданы специалистами с
техническим (т.е. физ.) образованием. Принцип действия этих приборов
основан на физических законах. В конечном итоге, тестер для измерения
напряжения или тока , томограф, получающий пространственную картину
внутренних органов, микроанализатор, определяющий уровень загрязненности
окружающей среды или потребляемой пищи, требуют от работающих определенных
знаний. С 1ой стороны - это знание основных принципов работы прибора, с
другой стороны - умение оценивать степень точности параметров, кот.
измеряет данный прибор.
10. Детерминизм класич. механики. Под детерминизмом понимается философское
учение об объективной закономерности, взаимосвязи и причинной
обусловленности всех явлений мат. и духовного мира. Центральным ядром
детерминизма явл. полож. о причинности. Идея детерминизма сост. в том, что
все явл-я и события в мире не произвольны, а подчиняются объективным
закономерностям, независимо от наших знаний о природе явлений. Всякое
следствие имеет свою причину. детерминизм Лапласа(1749 - 1827). Согласно
классическому механистическому детерминизму сущ-вует строго однозначная
связь между физическими величинами, хар-еризующ. сост. системы в какой-то
момент времени (координаты и импульсы) и значениями этих величин в люб.
последующий или предыдущий моменты времени. Принцип механического
детерминизма. If известны начальные координаты и скор. тел системы, а также
законы взаимдейст. тел, то можно определить сост. системы в люб.
последующий момент времени. Отметим, что для успешного практического
решения подобных задач законы взаимдейст. тел нужно знать очень точно, либо
нужно смириться с тем, что расчет будет адекватно описывать поведение
системы лишь в ограниченном временном интервале. Связано это с тем, что
неточности расчета имеют свойство накапливаться и искажать получающуюся
картину, - чем дальше, тем больше. Кроме того нужно иметь ввиду, что для
решения задачи о движении большого кол-ва взаимодействующих тел нужно
задать очень больш кол-во начальных данных, законов взаимдейст. и решать
очень громоздкую систему дифференциальных уравнений. С позиций сегодняшних
знаний о природе можно утверждать, что механистический детерминизм Лапласа
не работает в микромере, где процесы взаимдейст. частиц по своей природе
явл. вероятностными. При столкновении 2х атомов 1 из них может возбудиться
(перейти в возбужденное сост.), а может и остаться в основном,
невозбужденном сост.. В последнем случае атомы будут сталкиваться как
идеально упругие шары, в первом случае как неупругие шары. Результаты
столкновения в этих случаях будут сильно различаться, а решить, как будет
происходить взаимдействие, до того как оно произойдет, в принципе
невозможно. В микромире могут одновремено протекать процесы, кот. абсолютно
несовместимы в макромире. Когда описывается квантовая микросистема,
предсказывается ее поведение в рамках вероятностного описания, но не дается
однозначного ответа, как конкретно она будет себя вести. При этом всегда
остаются в силе причинно-следственные связи.
11. РАБОТА, кинетическая эн-я.Энергия- наиболее общая количественная мера
движения и взаимдейст. материи. Для изолированной системы эн-я остается
пост., она может переходить из 1ой формы в друг., но ее кол-во остается
неизменным. If сист. не изолирована, то эн-я может изменятся при
одновременном изменении энергии окружающих тел на такую же величину или за
счет энергии взаимдейст. тел внутри системы. При переходе системы из одного
состояния в другое ее эн-я не зависит от того, каким путем произошел этот
переход. Энергия системы в общем случае может переходить в друг. формы
материи. Поскольку сущ-вует многообразие форм движения материи, сущ-вует и
многообразие видов энергий: кинетическую, потенциальную и полн механическую
энергию. Работа силы- мера действия силы, кот. зависит от численной
величины силы и ее направл-я, от перемещения тчки приложения силы. If сила
F постояна по величине и направл., а перемещение происходит вдоль прямой,
то работа =а произведению силы на величину перемещения и косинус угла между
направлением силы и перемещением. работа - величина скалярная. Единицей
измерения Джоуль (Дж). В общем случае для вычисления работы под действием
переменной силы на криволинейном участке траектории вводят элементарную
работу dA. Считаем, что на бесконечно малом участке пути dr сила не
меняется и элементарная работа dA опр-ся как:
dA=F*dr*cos'альфа'=(F'вектор'dr'вектор') (11.2). Работа - величина
аддитивная; работа силы на конечном участке пути (1)R(2) опр-ся как сумма
элементарн. работ. Суммирование по бесконечно малым величинам dА есть
операция интегрирования: A12='интеграл от 1 до 2'(F(вектор)dr(вектор))
(11.3), где интегрирование ведется вдоль траектории. В векторном анализе
такой интеграл наз. циркуляцией вектора силы. Заметим, что в этом выражении
легко перейти к другой переменной интегрирования, ко времени. A12='интеграл
от 1 до 2'(F(вектор)dr(вектор)) = 'интеграл от t1 до
t2'((F(вектор)V(вектор))dt)= 'интеграл от t1 до t2'(Ndt) (11.4). Введенная
здесь величина N наз. мгновеной механической мощностью или просто мощностью
тела. N=dA/dt=(F(вектор)dr(вектор)/dt)=(F(вектор)v(вектор)) (11.5). Что
будет происходить с системой (в простейшем случае -с мат. точкой) при
совершении работы над ней. Запишем элементарную работу и выразим силу в нем
при помощи 2го з-на Ньютона.
dA=(F(вектор)dr(вектор))=m(a(вектор)dr(вектор))=m(dv(вектор)dr(вектор))/dt=m (dv(вектор)v(вектор))=md(v(вектор)v(вектор))/2=md(v^2)/2=d(mv^2/2) (11.6)
Слева стоит элементарная работа, а справа дифференциал некоторой ф-и
,имеющий размерность работы и зависящий от скор.: дифференциал ф-и скор.,
опред-мой совершеной работой. Пусть в начальный момент времени t0 скорость
тела равнялась (0. Полную работу за промежуток времени от t0 до t1 получим
после интегрирования dA, как это сделано в формуле (11.4). Совершаемая над
телом работа привела к увеличению его скор..Теперь можно ввести понятие
кин. энергии: A01=m(v1)^2/2 - m(v0)^2/2 = Ek1-Ek0. (11.7) Кинетическая эн-я
опр-ся работой, кот. совершена над телом. Положительная работа приводит к
увеличению скор. тела и к увеличению кин. энергии, отрицательная - к
уменьшению того и другого. If сист. сост. из многих тел, то ее
кинетическая эн-я складывается из кинетических энергий всех тел.
12. Поля консервативных сил. Потенциальная энергии . 13. З-н сохранения
механической энергии. Кроме кин. энергии есть еще потенциальная эн-я, для
кот. не сущ-вует общей формулы. Это понятие можно ввести лишь для огранич.
класа сил - для консервативных сил. Это силы, работа кот. по замкнутой
траектории =а нулю. Существует другое определение консервативных сил.
Консервативными силами называются такие силы, работа в поле кот. не зависит
от траектории и опр-ся только начальным и конечным положением системы.
Нетрудно показать, что эти определения равнозначны. Действительно, if
работа не зависит от траектории, то при обратном движении вдоль траектории
она будет такая же, но с обратным знаком. Просуммировав движение по
замкнутой траектории, состоящей из 2х кривых, получаем в сумме 0.
Консервативные силы, как правило, зависят только от положения тела, а
неконсервативные - от его скор.. Рассмотрим примеры полей консервативных и
неконсервативных сил. Силы трения или сопротивления явл. неконсервативными.
Их направл. опр-ся скор-тью перемещения тел. Силы трения всегда направлены
в сторону, противоположную направл. движения, т.е.: F(вектор)тр=-
(v(вектор)/v)Fтр. Здесь v(вектор)/v - единичный вектор, направленный вдоль
скор. тела. Работа силы трения по замкнутой траектории l =а: A(l)=
'интеграл c кружком от (l)'(-Fтр((v(вектор)/v)dr(вектор)))= -'интеграл от
t1 до t2'(Fтр((v(вектор)/v)dr(вектор)/dt)dt)= -'интеграл от t1 до
t2'(Fтр((v(вектор)v(вектор))/v)dt)= -'интеграл от t1 до t2'(Fтр*vdt)=-
'интеграл c кружком от (l)'(Fтр*dl). Кружок у интеграла - интегрирование по
замкнутой траектории. Последнее подынтегральное выражение скалярное, оно
всегда положительно, след., работа силы трения на замкнутой траектории
всегда отрицательна. Эта работа тем больше по модулю, чем длинее путь.
Вывод: силы трения - неконсервативные силы. Примером поля консервативных
сил явл. поле тяготения вблизи пов-ти Земли. Работа, кот. затрачивается на
перемещение тела из положения r1 в полож. r2 =а: A12='интеграл от r1 до
r2'(mg(вектор)dr(вектор))='интеграл от r1 до r2'(mg dr(g))=-mg'интеграл от
h1 до h2'(dh)=mg(h1-h2). Из этой формулы видно, что работа силы тяжести
зависит от величины этой силы и от разности начальной и конечной высот
тела. Никакой зависим. от формы траектории нет, а знчит, сила тяжести
консервативна. Также просто можно доказать, что консервативными явл. силы,
создающие однородное поле. Поле сил наз. однородным, if в люб. точке этого
поля сила, действующая на тело одинакова по величине и направл..
Консервативными явл. также поля центральных сил. Центральными называются
силы, направленные вдоль линии взаимдейст. тел, величина кот. зависит
только от расстояния между телами. Такому условию удовлетворяют, например,
кулоновские силы и силы тяготения. В поле консервативных сил можно ввести
еще 1 вид механической энергии - потенциальную энергию. Прежде чем ее
вводить, выбирают тчку, в кот. она =а нулю. Потенциальная эн-я тела в люб.
точке прост-ва опр-ся работой, кот. нужно совершить, чтобы переместить
тело из этой тчки в тчку с нулевой пот. энергией. Отметим 2 существенных
момента, вытекающих из этого определения. Во-перв., поскольку расм-ется
поле консервативных сил, знач. пот. энергии тела зависит от положения тела
и выбора тчки нулевой пот. энергии и не зависит от формы пути, по кот тело
перемещается. Во-вторых, поскольку выбор нуля пот. энергии произволен,
знач. пот. энергии опр-ся с точностью до аддитивной пост., след. физ. смысл
имеет лишь разность потенциальных энергий или приращение пот. энергии, но
не сама эн-я. На рис.11.3 мы представили 3 тчки в прост-ве поля
консервативных сил: тчку (b), тчку (с) и тчку (о), потенциальную энергию в
кот. будем считать =ой 0. Обозначим через Abo работу, кот. совершается при
переносе тела из тчки (b) в тчку (o). If перемещать тело из тчки (o) в
тчку (b), то совершаемая при этом работа будет =а Aob=-Abo, поскольку
меняется направл. движения, но не меняются действующие на тело силы. Работу
по перемещению тела из тчки (c) в тчку (o) будем обозначать, как Асo. Точно
также Асо=-Аос. При перемещении тела из тчки (b) в тчку (c) совершается
работа Abc=-Acb. Согласно определению пот. энергии и формуле (11.3) для
вычисления работы имеем: Eп(b)=A(b0)= 'интеграл от b до
0'(F(вектор)dr(вектор)); Eп(с)=A(с0)= 'интеграл от с до
0'(F(вектор)dr(вектор)); (11.8). Eп(b)- Eп(c)= 'интеграл от b до
0'(F(вектор)dr(вектор))- 'интеграл от с до 0'(F(вектор)dr(вектор))=
'интеграл от b до 0'(F(вектор)dr(вектор))+ 'интеграл от 0 до
c'(F(вектор)dr(вектор))= 'интеграл от b до c'(F(вектор)dr(вектор))=A(bc)
(11.9) Оказалось доказанным следующее утв.: работа, совершаемая при
перемещении тела в поле консервативных сил из тчки (b) в тчку (c), =а
разности потенциальных энергий тела в точках (b) и (c). Однако, эта же
работа =а разности кинетических энергий в точке (с) и (b). A(bc)=Eк(b)-
Eк(с)=Eп(с)-Eп(b) => Eк(b)+Eп(b)=Eк(с)+Eп(с) (11.10) Получилось, что сумма
кин. и пот. энергии тела, кот. наз. полной механической энергией тела,
оказалась неизменной. Тоже самое справедливо и для системы механических
тел. Получившееся утв. носит наз. з-на сохранения механической энергии:
полная механическая эн-я изолированной системы в кот. действуют
консервативные силы остается неизменной. Между консервативными силами и
пот. энергией должна быть связь, поскольку потенциальная эн-я вводится
только в поле консервативных сил. Найдем эту связь для простейшего случая,
когда потенциальная эн-я зависит только от 1ой координаты. Примером может
служит потенциальная эн-я вблизи пов-ти Земли, к нему и обратимся. Пусть
ось (oy) направлена вертикально вверх и имеет ноль на пов-ти Земли. Тогда
потенциальная эн-я зависит только от координаты y и =а: Eп=mgy. Возьмем
частную производную по координате y от левой и правой частей =ства:
dEп/dy=mg. Справа стоит сила тяжести, кот. направлена вверх, т.е. против
оси (oy). По-видимому, производной, стоящей в левой части =ства тоже можно
приписать направл.; ее проекция на ось (oy) будет =а (dEп/dy)'subscript y'=-
mg=-F'subscript y'. В случае, когда действующая сила имеет проекции на все
координатные оси, можно записать аналогичные выражения и для проекций на
друг. оси. Fx=-dEп/dx; Fy=-dEп/dy; Fz=-dEп/dz (11.11) Для силы, таким
обрзом, справедливо выражение: F(вектор)=-(e(вектор)x(dEп/dx)+
e(вектор)y(dEп/dy)+ (вектор)z(dEп/dz))=-(
e(вектор)x(d/dx)+e(вектор)y(d/dy)+e(вектор)z(d/dz))Eп= -grad Eп (11.12).
Градиент пот. энергии. Отметим некоторые св-ва этого вектора. Особенность
его сост. в том, что вдоль координатных осей нужно откладывать не числа, а
математические операции дифференцирования по соответствующей координате. За
градиентом обязательно должна стоять скалярная ф-я, к кот. он применяется.
Градиент пот. энергии имеет направл., в кот. потенциальная эн-я
увеличивается быстрее всего, и величину, равную скор. этого увеличения, if
двигаться в этом направлении. Из сказанного след., что силы поля заставляют
тело двигаться в направлении минимума пот. энергии. Все ественые процесы
стремятся привести систему к минимуму пот. энергии. Этот вывод справедлив
не только для механики, но и для других разделов физики и естествознания.
14. Внутр. эн-я системы. З-н сохр-я энергии. Мы рассмотрели
взаимопревращение кин. и пот. энергий в поле консервативных сил. Что
происходит, if действуют неконсервативные силы. Мы знаем, что, if телу
сообщит скорость (сообщить кинетическую энергию)и пустить двигаться,
например, по пов-ти земли, оно остановиться за счет сил трения. Его
потенциальная эн-я не изменится, а кинетическая станет =ой нулю, когда оно
остановиться. Для ответа на вопр, во что перешла кинетическая эн-я,
необходимо ввести еще 1 вид энергии- внутреннюю энергию. Определим
внутреннюю энергию Евн как сумму кинетических и потенциальных энергий
частиц (атомов), составляющих тело: Евн=S((Е^i)пот+(Е^i)кин) (11.13) Здесь
N -число частиц, i -номер частицы. Параметром, характеризующим внутреннюю
энергию явл. температура тела Т0К, выраженная в градусах Кельвина. Чем
больше температура тела, тем с большей скор-тью двигаются атомы и тем самым
больше внутренняя эн-я. Численно внутренняя эн-я =а: Евн=(М/'мю')C Т^0
(11.14) М - маса тела, ??????молярная маса (численно равная атомному или
молекулярному весу составляющих атомов),С -теплоемкость, равная энергии,
кот. нужно передать 1му килограмму-молю, чтобы нагреть его на 1 градус
Цельсия или Кельвина. Изменение внут. энергии при переходе системы из
состояния 1 в сост. 2 пропорционально изменению температуры тела: Евн(2)-
Евн(1) = 'дельта'U = (M/m)C 'дельта T^0. Сумму кин., пот. и внут. энергий
системы принято называть полной энергией Е. В рассмотренном нами примере с
останавливающемся телом кинетическая эн-я тела переходит во внутреннюю
энергию, т.е. идет на нагревание системы. С учетом вышесказанного мы можем
сформулировать з-н сохранения полной энергии системы: Полная эн-я
изолированной системы остается пост.. Мы теперь не конкретизируем, какие
силы (консервативные или неконсервативные) действуют в этой сист-е. Работа
в сист-е, совершаемая за счет пот. энергии, может переходить и в
кинетическую энергию системы, и во внутреннюю энергию. При увеличении внут.
энергии сист. нагревается.12.1 Постулаты Т. отнсит-ти. К концу прошлого в. Д.К.Максвеллом (1831-1879)
были сформулированы осн. законы электричества и магнетизма в виде системы
дифференциальных уравнений, кот. описывали постоянные и переменные
электрические и магнитные поля. Решения системы уравнений Максвелла
описывали всю гамму поведений электромагнитных полей в прост-ве и времени.
Из системы уравнений Максвелла следовало, что переменные электрические и
магнитные поля могут существовать только в форме единого электромагнитного
поля, кот. распространяются в прост-ве после возникновения с пост. скор-
тью, =ой скор. света в вакууме - с. На вопр о том, в какой среде
распространяется это поле, Т. Максвелла ответа не давала. Ключевым моментом
Т. Максвелла являлось то, что уравнения Максвелла были неинвариантны
относит. преобр. Галилея. Это означало, что при переходе с помощью преобр.
Галилея из 1ой инерц. системы отсч. в друг., уравнения меняли свой вид. Это
обозначало, что преобр. Галилея нельзя было применять при описании
электрич. и магнитных явлений. Строгое математическое доказательство
неинвариантности уравнений Максвелла относит. преобр. Галилея достаточно
сложно. Поэтому, проиллюстрируем этот факт на простом и наглядном примере.
Для этого потребуется вспомнить, какие силы действуют на движущиеся заряды
в электрич. и магнитных полях. Пусть 2 одноименных заряда летят с
одинаковой скор-тью в направлении оси (ox), как это показано на рис.12.1.
В неподвижной сист-е отсч. заряды будут создавать электрические и магнитные
поля, и, след., будут находиться в полях друг друга. Электрическое поле
воздействует на заряд силой Кулона, магнитное - силой Лоренца. Напомним
формулы для вычисления этих сил для случая, приведенного на рисунке.
Fк=1/4Пи'эпсилонт нулевое'*q1q2/l^2; Fa=q2*v*B1, где B1=4*Пи*q1*v/'мю
нулевое'*l^2. Здесь B1 - магнитная индукция, создаваемая первым зарядом в
точке, где находится 2й. Сила Кулона для одноименных зарядов всегда явл.
силой отталкивания, а сила Лоренца в данном случае явл. силой притяжения.
Тким обрзом, в неподвижной сист-е отсч. величина силы взаимдейст. =а: F =
FK - FЛ. If перейти к сист-е отсч., движущейся вдоль оси (ох) со скор-тью (
вместе с зарядами, то в ней заряды окажутся неподвижными, и сила Лоренца не
возникнет. Тким обрзом, силы взаимдейст. зарядов в различн. инерц. сист.
отсч. окажутся разными. След. и поведение частиц ,их движение во времени,
будет разным в зависим. от того, в какой инерц. сист-е коорд. мы
рассматриваем это движение. Есcно, что это абсурд и отсюда сделаем вывод,
что к движущимся зарядам, законы движения и взаимдейст. кот. описываются
уравнениями Максвелла, нельзя применять принцип отнсит-ти Галилея, т.е.
преобр. Галилея. Вторым этапом в становлении специальной Т. отнсит-ти стал
опыт А.А.Майкельсона (1852-1931), проведенный в 1881 году. В опыте
определялась скорость света в различн. движущихся сист. отсч.. Уже
говорилось, что по Т. Максвелла электромагнитные волны должны
распространяться со скор-тью в вакууме - с. Встал вопр, в какой инерц. сист-
е отсч. это происходит. If таковой считать систему отсч., связанную с
неподвижными звездами, то скорость нашей планеты относит. них ( = 30 км/с.
Эта скорость большая и сравнимая со скор-тью света с. Майкельсон
экспериментально определял скорость света в разных сист. отсч., а имено, он
измерял скорость света, идущего в 2х противоположных относит. Земли напр-
ях. В соответствии с преобразованиями Галилея и положениями класич.
механики, скор. света в этих сист. отсч. должны были бы отличатся на
величину 2v. Результаты эксперимента Майкельсона однозначно показали, что
скорость света не зависит от выбора системы отсч. и всегда =а с. Т.е. было
установлено, что электромагнитные волны во всех инерц. сист. отсч.
распространяются с одинаковой скор-тью с(3(108 м/с. Эксперименты, подобные
опыту Майкельсона повторялись неоднократно со все возрастающей точностью.
На сегодняшний день можно утверждать, что скорость в различн. сист. отсч.
одинакова с точностью порядка нескольких мм/с.
16. Преобразования Лоренца. В 1904-м году голландский физик Х.А.Лоренц
(1853-1928) вывел преобр. для перехода из 1ой инерц. системы отсч. в друг.,
отличные от преобр. Галилея. Сист. уравнений Максвелла была инвариантна
относит. этих преобр.. Преобразования касались и коорд., и времени.
Обозначим координаты и время некоторого события (например положения мат.
тчки в прост-ве) в инерц. сист-е отсч. К через x, y, z, t, а в другой
инерц. сист-е отсч. К' через x',y',z',t'. Системы отсч. выбраны так, чтобы
их координатные сетки начальный момент времени t=t'=0 совпадали, а в
дальнейшем сист. К' двигалась относит. системы К со скор-тью u вдоль ее оси
(ox). Преобразования Лоренца имеют вид: x'=x-ut/'корень'(1-(u/c)^2); y'=y;
z'=z; t'=(t-ux/c^2)/'корень'(1-(u/c)^2) (12.1). Сразу можно сказать, что
при u/c 'стремится' 0 преобр. Лоренца переходят в преобр. Галилея. Т.е.
преобр. Галилея явл. частным случаем преобр. Лоренца при малых скоростях
движения. Анализируя сложившееся полож. А.Эйнштейн разработал новую
механику больших скоростей, называемую сейчас релятивистской механикой или
специальной Т. отнсит-ти. В основе этой Т. лежат 2 постулата. Согласно
первому постулату скорость распространения света во всех инерц. сист.
коорд. одинакова и =а скор. распространения света в вакууме - с. Этот
постулат утверждает эквивалентность инерц. систем отсч. относит. скор.
света. 2й постулат закл. в том, что все физические законы и явл-я
формулируются и протекают одинаково во всех инерц. сист. отсч., т.е.
инвариантны относит. преобр. Лоренца. Базируясь на этих постулатах,
Эйнштейн разработал Т. движения систем при любых скоростях, вплоть до
скоростей света. В рамках Т. отнсит-ти получены выводы, казалось бы
противоречащие законам класич. механики. Однако, все выводы этой Т.
подтверждены экспериментально с высокой точностью. Согласно принципу
соответствия старая Т. (классическая механика или механика движения тел при
малых скоростях) явл. частным случаем новой. И наоборот, новая Т. отнсит-ти
переходит в старую классическую механику при скоростях движения v
Страницы: 1, 2, 3
|