Меню
Поиск



рефераты скачать Методы и средства измерений


RТ-50=50·(1+3,9692·10-3(-50)+5,8290·10-7·(-50)2+4,3303·10-12(-50-100)·(-50)3) =78,46 Ом.

R3-50°С=6000·78,46 /1300=362,215 Ом

При +150°С получим

RТ+150=50·(1+3,9692·10-3(+150)+5,8290·10-7·(+150)2) =164,20 Ом.

R3+100°С=6000·164,20/1300=757,846 Ом


Диапазон изменения сопротивлений переменного резистора

R3=362,215…757,846 Ом при изменении температуры от -50 до +150 °С.

Цена деления шкалы составит


ЦД=(150-(-50))/( 757,846-362,215)=0,5 °С/Ом.


1.3.3 Определяем погрешность измерения температуры в верхнем пределе измерений, для заданного класса допуска ТС

В нашем случае используется ТСМ 50 класса допуска В. Допускаемые отклонения сопротивлений от номинального значения ТСП при 0 °С для класса В:±0,05%.


RТ150,2=164,415 Ом,

RТ149,2=163,985 Ом.


Размах показаний прибора в верхнем пределе диапазона измерений (+200 оС) составит RТ150,2- RТ149,2=164,415-163,985=0,43 Ом. Таким образом, абсолютная погрешность измерения температуры составит ΔТ=±0,4 оС

Погрешность будет иметь как аддитивный, так и мультипликативный характер.


1.3.4 Определяем погрешность прибора, если резисторы R1 и R2 имеют допуски ± 0,5 %

Из анализа формулы (1.3) видно, что


R4 = R1×R3 /R2.                                                                                (1.9)

Поэтому, при Т = 0 °С:


R4max = R1max×R3/R2min,

R4min = R1min×R3/R2max,

R4max = 6000×(1,005)× 230,8/(1300×0,995) = 10,7593 = 10,76 Ом,

R4min = 6000×(0,995)× 230,8/(1300×1,005) = 10,5463 = 10,54 Ом.


По формуле приведения


Т = Т1 + (Т2 – Т1)×(R – R1)/(R2 – R1),                                              (1.10)


где R2 и R1 – наибольшее и наименьшее значения интервала сопротивлений, в который входит известное значение R; Т1 и Т2 – наименьшее и наибольшее значения интервала температуры в который входит искомое значение Т.

В градуировочной таблице рассчитанные по формуле (1.9) от +2 +3 °С и от -2– 3 °С), поэтому


Т = 2 + (3 – 2)×(50,50 – 50,39)/(50,585 – 50,39) = +2,564 °С.

Т = -2 + (–3 –(-2))×(49,50 – 49,661)/(49,4165 – 49,661) = – 2,571 °С.


Таким образом, погрешность измерений составит DТ = ± 2,5 °С.


1.3.5 Определяем погрешность измерения при наличии сопротивления проводов 0,5 Ом

Соединительные провода (2 шт.) подключены к термосопротивлению, поэтому при Т = 0 °С истинное сопротивление будет равно


R4 = R1×R3 /R2 – 2RП = 50 – 0,5 – 0,5 = 49 Ом.

Поэтому систематическая аддитивная погрешность составит


DТ = -5 + (-6-(-5))×(49,00 – 49,0225)/(47,328 – 49,0225) = – 5,013 °С.


1.4 Измерение температуры с помощью термосопротивления, включенного в неуравновешенный мост

 неуравновешенный мост включено термосопротивление, шкала миллиамперметра имеет заданный диапазон измерений, напряжение питания моста Uab, известны также сопротивления плеч моста R2 и R3.

Требуется:

1.  Изобразить принципиальную схему неуравновешенного моста.

2.  Определить сопротивление R1, если Т0 = 0 °С.

3.  Построить график I = f(T), в пределах диапазона измерений и определить цену деления шкалы (мА/°С).

4.  Определить погрешность измерения, связанную с нелинейностью функции преобразования.

5.  Определить погрешность измерений при наличии допуска на номинальное сопротивление терморезистора ± 0,1 Ом.

6.  Определить погрешность измерений при падении напряжения на 0,2 В.


Решение

Исходные данные сводим в табл. 1.5.


Таблица 1.5

Исходные данные

Параметр

Обозначение

Значение

1. Диапазон измерений

ДИ

± 60 °С

2. Сопротивления

R2

R3

280 Ом

35 Ом

3. Тип термосопротивления

ТСП 100

100 Ом при 0°С

4. Напряжение питания

Uab

5 В


1.4.1 Схема подключения термосопротивления к неуравновешенному мосту

Схема подключения термосопротивления к неуравновешенному мосту приведена на рис. 1.4.


1.4.2 Определяем сопротивление R1 при условии Т0 = 0 °С

Сопротивление резистора R1 определяем по закону Кирхгофа (1.5)


R1 = R2×R4 /R3,                                                                                (1.9)

R1 = 280×100/35 = 800 Ом.


1.4.3 Строим график I = f(T) в пределах диапазона измерений и определяем цену деления шкалы (мА/°С)


Рис. 1.4. Схема измерения термосопротивления с помощью неуравновешенного моста


Зависимость силы тока от изменения сопротивления для неуравновешенного моста определяется по формуле


,                                                               (1.10)


после преобразований получим:



Для удобства перейдем в миллиамперы:


                                                                     (1.11)


На основании зависимости (1.11) можно построить таблицу и график изменения силы тока в диагонали измерительного моста в зависимости от изменения сопротивления термопреобразователя и температуры в пределах заданного диапазона измерений.


Таблица 1.5

Зависимость силы тока от величины термосопротивления и температуры

Температура Т, °С

Сопротивление термопреобразователя RT, Ом

Сила тока I, мА

Значения линейной функции Iл, мА

Цена деления, мА/°С

– 70

7,233

2,430

2,345

- 0,0347143

– 60

7,633

2,076

2,010

- 0,0346

– 50

8,031

1,719

1,675

- 0,03438

– 40

8,427

1,367

1,340

- 0,034175

– 30

8,822

1,019

1,005

- 0,0339667

– 20

9,216

0,675

0,670

- 0,03375

 – 10

9,609

0,335

0,335

- 0,0335

0

10,00

0

0

-

10

10,39

- 0,331

- 0,331

- 0,0331

20

10,779

-0,659

- 0,662

- 0,03295

30

11,167

- 0,984

- 0,997

- 0,0328

40

11,554

- 1,304

- 1,332

- 0,0326

50

11,940

- 1,246

-1,667

- 0,02492

60

12,324

- 1,935

- 2,002

- 0,03225

70

12,708

- 2,245

- 2,337

- 0,0320714

















1.4.4 Определяем погрешность измерения, связанную с нелинейностью функции преобразования

Наибольшая величина погрешности от нелинейности функции преобразования в пределах диапазона измерений составит


Dл = I – Iл = -2,245- (- 2,337) = - 0,092мА.


В относительном виде


dл = Dл/Imax ×100 % = - 0,092/ 2,430*100= - 3,79 %.


1.4.5 Определяем погрешность измерений при наличии допуска на номинальное сопротивление терморезистора ± 0,1 Ом

Подставим в формулу (1.11) значения 10 ± 0,1 Ом, получим:

Погрешность измерений при наличии допуска на номинальное сопротивление терморезистора ± 0,1 Ом составит DR =± 0,085 мА.

В приведенном виде


g = DR/(Imax – Imin)×100 % = ± 0,085/ (2,430 – ( - 2,245)) 100 % = ± 1,81 %.


1.4.6 Определить погрешность измерений при падении напряжения

Подставим в формулу (1.11) значение напряжения Uав = 5 – 0,2 = 4,8 В.

Наибольшая величина погрешности от падения напряжения питания составит


Du = I¢max – Imax = – 2,1 – (–2,245) = 0,145 мА.


В относительном виде


du = Du/Imax ×100 % = 0,145/(– 2,245) ×100 % = - 6,45 %.

Выводы:

1. Шкала измерительного прибора, отградуированная в градусах Цельсия, будет иметь погрешность нелинейности, увеличивающуюся к концу диапазона измерений и равную dл = – 3,79 %, это связано с тем, что величина R4 = RT входит в числитель и знаменатель выражения (1.10), являющимся теоретическим выражением функции преобразования для неуравновешенного моста.

2. Погрешность измерений при наличии допуска на номинальное сопротивление терморезистора ± 0,1 Ом в приведенном виде равна g = ± 1,81 %, она будет оказывать незначительное влияние на погрешность измерений.

3. Погрешность измерений из-за падения напряжения питания на 0,2 В в относительном виде равна du = – 6,45 %, поэтому падение напряжения при применении неуравновешенного моста будет оказывать существенное влияние на результат измерений.


ЗАДАНИЕ 2. МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ДАВЛЕНИЯ


2.1 Пружинная мембрана манометра диаметром D, толщиной h и модулем упругости ЕG деформируется под действием давления от 0 до δmах.

Требуется:

1. Изобразить схему мембраны деформационного манометра.

2. Определить диапазон измеряемых давлений.

3. Определить погрешность измерений, если толщина пружины h выполнена с допуском ±0,01 мм.

4.     Сделать заключение о соответствии манометра заданному классу точности.


Решение


Исходные данные сводим в табл. 2.1.


Таблица 2.1

Исходные данные

Параметр

Обозначение

Значение

1. Толщина, мм

h

0,8 мм

2. Диаметр, мм

D

86 мм

3.Модуль упругости

ЕG

92 ГПа

4.Допустимое напряжение мембраны

 σmах

600 МПа

5. Начальное напряжение мембраны

σ0

55 МПа

6. Класс точности

-

1.6

7.Перемещение центра мембраны, мм

δ1

0,45


2.1.1 Схема мембраны деформационного манометра

Схема мембраны деформационного манометра приведена на рис. 2.1.


Рис. 2.1. Схема мембраны деформационного манометра


2.1.2 Определяем диапазон измеряемых давлений

Механическое напряжение на мембране определяется по формуле


,                                                                                 (2.1)


где p – давление, Па; D – диаметр мембраны, мм; h – толщина мембраны, мм.

Из формулы (2.1) определяем диапазон измерения давлений при заданных значениях напряжения мембраны:


 Па


Верхний предел измерения


 Па


2.1.3 Определение результата измерения давления при перемещении центра мембраны δ1

Деформация мембраны связана с давлением следующим соотношением


,                                                                              (2.2)


выразим отсюда давление


,                                                                             (2.3)


Таким образом, при перемещении мембраны δ1=0,35 мм давление составит


 Па


2.1.4 Определение погрешности результата измерения по классу точности манометра

При заданном классе точности 1,0 нормируемое значение абсолютной погрешности измерений будет равно


,


Где γ – приведенная погрешность манометра, % ; - нормирующее значение, Па: в нашем случае, т.к. рmax = 358996.5 Па принимаем, что верхний предел измерения манометра 350 кПа,т.е.  = 350000 Па.

 Па


Запишем результат измерений


Р=(193139±5250) Па


2.1.5 Определяем погрешность измерений, если толщина пружины h выполнена с допуском ±0,01 мм

Подставим в зависимость (2.1) значения наибольшего давления и величину h с наибольшим и наименьшим размерам


 Па

Па


Наибольшую абсолютную погрешность определяем по выражению


= 357560.6-340536.3=17024,3 Па


Подставим в зависимость (2,1) значения минимального давления и величину h с набольшими и наименьшими размерами


Па

 Па


Минимальную абсолютную погрешность определяем по выражению


=39778,95-37837,37=1941,58 Па


Таким образом, видно, что погрешность от допуска на изготовления толщины мембраны зависит от измеряемого давления, т.е. является мультипликативной

Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.