|
Элементы орбиты: | ||||||||||||||||||||||
l, ° |
28,1 |
||||||||||||||||||||||
T, c |
5761,67 |
||||||||||||||||||||||
e |
0,0009 |
||||||||||||||||||||||
i, ° |
97,595 |
||||||||||||||||||||||
Ra, м |
6940000 |
||||||||||||||||||||||
Rп, м |
6952000 |
Кинематические параметры в геоцентрической экваториальной системе координат:
t, сек
4946.5
X, м
6137262,9
Y, м
3171846,1
Z, м
689506,95
Vx, м/с
-201,3
Vy, м/с
-1247,03
Vz, м/с
7472,65
l, °
28,1
Точность выведения:
- предельная ошибка по координате (3s) - 7 км.
- предельная ошибка по скорости (3s) - 5 м/с.
Пересчитав ошибку по координате на ошибку по периоду выведения орбиты получим предельную ошибку по периоду DT - 10 сек.
Корреляционная матрица ошибок выведения на момент выведения составляет:
Члены, стоящие на главной диагонали представляют собой квадраты предельных ошибок - (3s)2.
K11 = K22 = K33 = (3s)2 = 72 = 49 км.
K44 = K55 = K66 = (3s)2 = 52 = 25 м/с.
Остальные члены представляют собой вторые смешанные моменты Kij = Kji = rijsisj или Kij = Kji = rjj(3si)(3sj), где rjj - коэффициенты связи величин i и j. В данном случае вторые смешанные моменты Kij = Kji = 0.
Кинематические параметры в геоцентрической экваториальной системе координат на момент выведения с учетом ошибок выведения:
t, сек
4946.5
X, м
6144262,9
Y, м
3178846,1
Z, м
696506,95
Vx, м/с
-206,3
Vy, м/с
-1252,03
Vz, м/с
7477,65
l, °
28,1
Параметры орбиты с учетом ошибок выведения:
l, °
28,13
T, c
5795,7
W, °
28,13
p, км
6973,5
а, км
6973,6
e
0,00314
i, °
97,637
2.3.2. ЦЕЛИ РАБОТЫ
1) Исследование и моделирование движения ЦМ МКА при воздействии на КА возмущающих ускорений.
2) Разработка алгоритмов проведения коррекции траектории МКА, моделирования процесса, и расчет потребного топлива для проведения коррекции траектории.
3) Исследование динамики системы коррекции траектории при стабилизации углового положения в процессе проведения коррекции траектории МКА.
2.4. МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЦЕНТРА МАСС МКА
2.4.1.УРАВНЕНИЕ ДВИЖЕНИЯ КА
Рассмотрим невозмущенное движение материальных точек М и m в некоторой инерциальной системе координат. Движение совершается под действием силы притяжения Fz. Сила Fz для материальной точки m определяется формулой:
,
где ¦ - постоянная притяжения,
ro - единичный вектор, направленный от М к m,
,
где - радиус-вектор, проведенный из т.М до т.m.
r - относительное расстояние от М до m.
На точку М действует сила Fz, равная по величине и направленная в противоположную сторону.
На основе второго закона Ньютона уравнения движения материальных точек М и m имеют вид:
(1), (2)
или
(3), (4)
где p1 - радиус-вектор, проведенный из начала инерциальной системы координат в точку m.
p2 - радиус-вектор, проведенный из начала инерциальной системы координат в точку М.
.
Вычитая из уравнения (3) уравнение (4), получим уравнение движения материальной точки m относительно притягивающего центра М:
Так как m<<М, следовательно, можно пренебречь ускорением, которое КА с массой m сообщает притягивающему центру М. Тогда можно совместить начало инерциальной системы координат с притягивающим центром М. Следовательно, .
Таким образом, уравнение невозмущенного движения КА относительно притягивающего центра М в инерциальной системе координат, центр которой находится в М, имеет вид
,
где m = fM - гравитационная постоянная Земли.
Рассмотрим возмущенное движение КА в геоцентрической экваториальной (абсолютной) системе координат OXYZ:
- начало О - в центре масс Земли.
- ось X направлена в точку весеннего равноденствия g.
- ось Z совпадает с осью вращения Земли и направлена на Северный полюс Земли.
- ось Y дополняет систему до правой.
Движение КА в абсолютной системе координат OXYZ происходит под действием центральной силы притяжения Земли Fz, а также под действием возмущающих сил Fв. Уравнение движения имеет вид
или
где m = 597 кг - масса КА.
В проекциях на оси абсолютной системы координат OXYZ получим
или
или
или
где axв, ayв, azв - возмущающиеся ускорения.
Основные возмущающиеся ускорения вызываются следующими причинами:
- нецентральностью поля притяжения Земли.
- сопротивлением атмосферы Земли.
- влиянием Солнца.
- влиянием Луны.
- давлением солнечного света.
2.4.2. ВОЗМУЩАЮЩИЕ УСКОРЕНИЯ, ДЕЙСТВУЮЩИЕ НА МКА
1) Возмущающееся ускорение, вызванное нецентральностью гравитационного поля Земли.
Рассмотрим потенциал поля притяжения Земли. При точном расчете параметров орбиты спутников, в качестве хорошего приближения к действительной поверхности Земли принимают геоид. Геоид - это гипотетическая уровенная поверхность, совпадающая с поверхностью спокойного океана и продолженная под материком.
Иногда в баллистике под геоидом понимают не поверхность, а тело, которое ограничено поверхностью мирового океана при некотором среднем уровне воды, свободной от возмущений. Во всех точках геоида потенциал притяжения имеет одно и то же значение.
Потенциал притяжения Земли можно представить в виде разложения по сферическим функциям.
где mz = fMz - гравитационная постоянная Земли.
r0 - средний экваториальный радиус Земли.
сnm, dnm - коэффициенты, определяемые из гравиметрических данных, а также по наблюдениям за движением ИСЗ.
L - долгота притягивающей точки.
j - широта притягивающей точки.
Pnm(sinj) - присоединенные функции Лежандра степени m и порядка n (при m ¹ 0).
Pnm(sinj) - многочлен Лежандра порядка n (при m = 0).
Составляющие типа (mz/r)(r0/r)ncn0Pn0(sinj) - называют зональными гармониками n-порядка. Т.к. полином Лежандра n-го порядка имеет n действительных корней, функция Pn0(sinj) будет менять знак на n широтах, сфера делится на n+1 широтную зону, где эти составляющие имеют попеременно «+» или «-» значения. Поэтому их называют зональными гармониками.
Составляющие типа
(mz/r)(r0/r)ncnmcos(mL)Pnm(sinj) и (mz/r)(r0/r)ndnmsin(mL)Pnm(sinj)
- называют тессеральными гармониками n-порядка и степени m. Они обращаются в 0 на 2m меридианах, где cos(mL) = 0 и sin(mL) = 0 и на n-m параллелях, где Pnm(sinj) = 0 или dmPnm(sinj)/d(sinj)m = 0, сфера делится на n+m+1 трапецию, где эти составляющие сохраняют знак.
Составляющие типа и
(mz/r)(r0/r)ncnncos(nL)Pnn(sinj) и (mz/r)(r0/r)ndnnsin(nL)Pnn(sinj)
- называют секториальными гармониками n-порядка и степени m. Эти составляющие меняю знак только на меридианах, cos(nL) = 0 и sin(nL) = 0, на сфере выделяют 2n меридиональных секторов, где эти составляющие сохраняют знак.
Многочлен Лежандра степени n находится по следующей формуле:
Pn0(z) = 1/(2nn!)´(dn(z2 - 1)n/dzn)
Присоединенная функция Лежандра порядка n и степени m находится по следующей формуле:
Pnm(z) = (1-z2)m/2´dmPn0(z)/dzm
Возмущающая часть гравитационного потенциала Земли равна
Uв = U’ + DU’ = (U - mz/r) + DU’
где DU’ - потенциал аномалий силы тяготения Земли.
U’ - часть потенциала Земли, которая учитывает несферичность Земли.
Следовательно,
Первая зональная гармоника в разложении потенциала учитывает полярное сжатие Земли.
Зональные гармоники нечетного порядка и тессеральные гармоники, где n-m нечетное число - учитывают ассиметрию Земли относительно плоскости экватора.
Секториальные и тессеральные гармоники - учитывают ассиметрию Земли относительно оси вращения.
Первая зональная гармоника имеет порядок 10-3, а все остальные - порядок 10-6 и выше. Поэтому будем учитывать в разложении потенциала притяжения только зональную гармонику (n=2, m=0) и секторальную гармонику (n=2, m=2). Также не будем учитывать потенциал аномалий силы тяготения Земли DU’.
Таким образом,
Uв = (mz/r)(r0/r)2[c20P20(sinj) + (c22cos(2L) + d22sin(2L))P22(sinj)],
где c20 = - 0,00109808,
c22 = 0,00000574,
d22 = - 0,00000158.
P20(x) = 1/222!´d2(x2 - 1)2/dx2.
Следовательно P20(x) = (3x2 - 1)/2.
Так как sinj = z/r, следовательно P20(sinj) = (3(z/r)2 - 1)/2.
P22(x) = (1 - x2)2/2´d2P20(x)/dx2 = 1/2´(1 - x2)´d2(3x2 - 1)/dx2
Следовательно P22(x) = 3(1 - x2).
Так как sinj = z/r, следовательно P22(sinj) = 3(1 - (z/r)2).
Значит
Чтобы найти возмущающее ускорение от нецентральности поля тяготения Земли в проекциях на оси абсолютной системы координат OXYZ, надо взять производные от возмущающего потенциала Uв по координатам X, Y, Z, причем r = Ö(x2 + y2 + z2).
Следовательно,
2) Возмущающее ускорение, вызванное сопротивлением атмосферы.
При движении в атмосфере на КА действует сила аэродинамического ускорения Rx, направленная против вектора скорости КА относительно атмосферы:
где Cx = 2 - коэффициент аэродинамического сопротивления.
Sм = 2,5 м2 - площадь миделевого сечения - проекция КА на плоскость, перпендикулярную направлению скорости полета.
V - скорость КА.
r - плотность атмосферы в рассматриваемой точке орбиты.
Так как исследуемая орбита - круговая с высотой Н = 574 км, будем считать, что плотность атмосферы одинакова во всех точках орбиты и равна плотности атмосферы на высоте 574 км. Из таблицы стандартной атмосферы находим плотность наиболее близкую к высоте Н = 574 км. Для высоты Н = 580 км r = 5,098´10-13 кг/м3.
Сила аэродинамического ускорения создает возмущающее касательное ускорение aa:
Найдем проекции аэродинамического ускорения на оси абсолютной системы координат axa, aya, aza:
aa направлено против скорости КА, следовательно единичный вектор направления имеет вид
ea = [Vx/|V|, Vy|V|, Vz/|V|], |V| = Ö(Vx2+Vy2 +Vz2)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9
Новости |
Мои настройки |
|
© 2009 Все права защищены.