Подвиг Фарадея состоит в
том, что он завершил накопление экспериментальных открытий в области
электромагнетизма и положил начало их теоретическому осмыслению, завершенному
Максвеллом. Наглядность перестала быть обязательной для объяснения физических
явлений.
Мысль об объяснении
световых явлений с помощью колебаний электрических и магнитных сил,
распространяющихся с конечной скоростью, возникла у него еще в 1832 году, когда
он оставил в Лондонском Королевском обществе описание своей гипотезы в
запечатанном пакете, но хотел закрепить свой приоритет. Пакет был вскрыт только
через сто с лишним лет, в 1938 году, через пол века после того, как Генрих Герц
окончательно доказал существование электромагнитных (в том числе световых)
волн.
В 1845 году М. Фарадеем
открыт эффект Фарадея, который явился первым доказательством наличия прямой
связи между магнетизмом и светом.
Эффект Фарадея, один из
эффектов магнитооптики, заключается во вращении плоскости поляризации
электромагнитного излучения (например, света), распространяющегося в веществе
вдоль силовых линий постоянного магнитного поля, проходящих через это вещество.
Феноменологическое
объяснение эффекта Фарадея заключается в следующем. Намагниченное вещество в
общем случае уже нельзя охарактеризовать единым преломления показателем n.
Показатели преломления n
+ и n- для излучения правой и левой круговых поляризаций становятся различными.
Проходящее через изотропную среду линейно поляризованное излучение всегда может
быть формально представлено как суперпозиция (наложение) двух поляризованных по
правому и левому кругу волн с противоположным направлением вращения.
Различие n + и n-
приводит к тому, что поляризованные по правому и левому кругу составляющие
излучения распространяются в среде с различными фазовыми скоростями, приобретая
разность хода, линейно зависящую от оптической длины пути. В результате
плоскость поляризации монохроматического света с длиной волны (после
прохождения в среде пути l поворачивается на угол φ: (= φl
(n + – n-)/φ. Разность (n + – n-) линейно зависит от напряжённости
магнитного поля Н в области не очень сильных полей, в которой в общем случае
справедливо соотношение φ = VHl, где константа
пропорциональности V зависит от свойств вещества, длины волны излучения и
температуры и носит название постоянной Верде.
Эффект Фарадея оказался
тесно связанным с Зеемана эффектом, открытым в 1896 и обусловленным
расщеплением уровней энергии атомов и молекул магнитным полем. Частоты,
соответствующие отщепленным уровням, сдвигаются симметрично по отношению к
основной частоте. Эта симметричность проявляется, в частности, в том, что
квантовые переходы между этими уровнями при продольном относительно поля
распространении света (в этом случае можно считать исходный уровень
расщепленным лишь на 2 подуровня) происходят с испусканием и поглощением
фотонов, поляризованных по кругу направо и налево. В результате показатели
преломления (и коэффициент поглощения), слабо зависящие от длины волны
(частоты) света, становятся различными для право- и левополяризованных по кругу
компонент монохроматического излучения. Грубо можно сказать, что различие
скоростей обусловлено различием длин волн (частот) света, поглощаемого и
переизлучаемого частицами вещества. Строгое описание Ф. э. возможно лишь в
рамках квантовой теории.
В эффекте Фарадея ярко
проявляется специфический характер вектора напряжённости магнитного поля Н (Н –
осевой вектор, "псевдовектор"). Обусловленное Н направление поворота
плоскости поляризации при эффекте Фарадея, в отличие от явления естественной
оптической активности, не зависит от направления распространения излучения.
Поэтому многократное прохождение света через среду, помещенную в магнитное
поле, приводит к возрастанию угла поворота плоскости поляризации в
соответствующее число раз. Эта особенность эффекта Фарадея нашла применение при
конструировании так называемых невзаимных оптических и микроволновых устройств,
циркуляторов, гираторов, фазовращателей СВЧ и т.д. Эффект Фарадея широко
используется в научных исследованиях.
В этой области столько
открытий и идей, предложенных Фарадеем, что только перечисление эффектов,
явлений и физических величин, названных именем Фарадея, очень впечатляет.
Фарада, единица электрической ёмкости в
Международной системе единиц и в МКСА системе единиц. Названа в честь М.
Фарадея. Обозначения: рус. ф, международное F. 1 Ф. – ёмкость конденсатора, при
которой заряд в 1 кулон создаёт на обкладках конденсатора разность потенциалов
1 вольт. Единица ёмкости системы СГСЭ 1 см = (с – числовое значение скорости света в вакууме,
выраженное в см/сек). В практике чаще применяются дольные от Ф. единицы:
микрофарада (мкф, F), 1 мкф = 10-6 ф, и пикофарада (пф, pF), 1 пф =
10-12ф.
Фарадей,
внесистемная единица количества электричества, применяется в электрохимии;
названа в честь М. Фарадея. 1 Ф. = (9,648456 ± 0,000027) (104 к (на 1973), т.
е. равен стольким же кулонам, сколько к/моль содержится в Фарадея числе.
В 1840 году, ещё до
открытия закона сохранения энергии, Фарадей высказал мысль о единстве "сил"
природы (различных видов энергии) и их взаимном превращении. Он ввёл
представления о силовых линиях, которые считал физически существующими.
Силовые линии, линии,
проведённые в каком-либо силовом поле (электрическом, магнитном,
гравитационном), касательные к которым в каждой точке пространства совпадают по
направлению с вектором, характеризующим данное поле (напряжённостью
электрического или гравитационного полей, магнитной индукцией). Изображение
силовых полей с помощью Силовых линии - частный случай изображения любых
векторных полей с помощью линий тока. Так как напряжённости полей и магнитная
индукция - однозначные функции точки, то через каждую точку пространства может
проходить только одна Силовая линия. Густота силовых линий обычно выбирается
так, чтобы через единичную площадку, перпендикулярную к силовой линии,
проходило число силовых линий, пропорциональное напряжённости поля (или
магнитной индукции) на этой площадке.
Таким образом, силовые
линии дают наглядную картину распределения поля в пространстве: густота силовых
линий и их направление характеризуют величину и направление напряжённости поля.
Силовые линии электростатического поля всегда незамкнуты: они начинаются на
положительных зарядах и оканчиваются на отрицательных (или уходят на
бесконечность). Силовые линии вектора магнитной индукции всегда замкнуты, т. е.
магнитное поле является вихревым. Железные опилки, помещенные в магнитное поле,
выстраиваются вдоль силовых линий; благодаря этому можно экспериментально
определять вид силовых линий магнитной индукции. Вихревое электрическое поле,
порождаемое изменяющимся магнитным полем, также имеет замкнутые силовые линии.
Идеи Фарадея об
электрическом и магнитном полях оказали большое влияние на развитие всей
физики. В 1832 году Фарадей высказал мысль о том, что распространение
электромагнитных взаимодействий есть волновой процесс, происходящий с конечной
скоростью.
1.4 Исследование
положений Фарадея о превращении магнетизма в электричество и электричества в
магнетизм
Талантливый
экспериментатор, наделённый научной интуицией, Фарадей поставил ряд опытов, в
которых были открыты фундаментальные физические законы и явления. Ознакомившись
с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током
(1820), Ф. занялся исследованием связи между электрическим и магнитными
явлениями и в 1821году впервые обнаружил вращение магнита вокруг проводника с
током и вращение проводника с током вокруг магнита. В течение последующих 10
лет Фарадей пытался "превратить магнетизм в электричество"; его
исследования завершились в 1831году открытием индукции электромагнитной. Он
детально изучил явление электромагнитной индукции, вывел её основной закон,
выяснил зависимость индукционного тока от магнитных свойств среды, исследовал
явление самоиндукции и экстратоки замыкания и размыкания. Открытие явления
электромагнитной индукции сразу же приобрело огромное научное и практическое
значение; оно легло в основу электротехники.
Работам Фарадея в области
электричества положило начало исследование так называемых электромагнитных
вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало
известно не только об электромагнетизме, но и о своеобразии взаимодействий тока
и магнита: здесь действовали не привычные для классической механики центральные
силы, а силы иные, стремившиеся установить магнитную стрелку перпендикулярно
проводнику. Фарадей поставил перед собой вопрос: не стремится ли магнит к
непрерывному движению вокруг проводника с током? Опыт подтвердил гипотезу.
В 1821 году Фарадей дал
описание физического прибора. В левом сосуде с ртутью находился стержневой
постоянный магнит, закрепленный шарнирно в нижней части. При включении тока его
верхняя часть вращалась вокруг неподвижного проводника. В правом сосуде
стержень магнита был неподвижен, а проводник с током, свободно подвешенный на
кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита. Это
было первое электромагнитное устройство с непрерывным движением. Именно с этого
момента, судя по всему, у Фарадея начинают складываться представления о
всеобщей ''взаимопревращаемости сил''. Получив при помощи электромагнетизма
непрерывное механическое движение, он ставит перед собой задачу обратить
явление или, по терминологии Фарадея, превратить магнетизм в электричество.
Схема прибора изображена
на рис. 9. В левом сосуде с ртутью находился постоянный магнит, закрепленный
шарнирно в нижней части. В сосуд опускался неподвижный проводник, и при
включении тока верхняя часть магнита начинала вращаться вокруг проводника. В
правом сосуде стержень был неподвижен, а проводник с током,свободно подвешенный
на кронштейне, скользил по ртути, совершая вращение вокруг полюса магнита.
Рис.9. Схема "электромагнитных
вращений" (по рисунку Фарадея): 1,2 — чаши с ртутью; 3 — подвижный магнит;
4 — неподвижный магнит; 5, 6 — провода, идущие к батарее; 7 — медный стержень;
8 — неподвижный проводник; 9 — подвижный проводник.
Это явление было названо "эффектом
электромагнитных вращений"; таким образом, Фарадей впервые показал
возможность построения электрического двигателя и опубликовал в журнале
Королевского общества статью "О новых электромагнитных движениях".
В качестве примера,
характеризующего ход мыслей ученого и формирование его представлений об
электромагнитном поле, рассмотрим явление, получившее тогда название
''магнетизма вращения''. За много лет до работ Фарадея мореплаватели заметили
тормозящее влияние медного корпуса компаса на колебания магнитной стрелки. В
1824 году Араго описал это явление, но ни он, ни другие физики объяснить
явление ''магнетизма вращения'' не могли. Сущность явления состояла в
следующем. Подковообразный магнит мог вращаться вокруг вертикальной оси, а над
его полюсами находился алюминевый диск, который также мог вращаться на оси,
совпадающей по направлению с осью вращения магнита. В состоянии покоя никаких
взаимодействий между диском и магнитом не наблюдалось. Но стоило начать вращать
магнит, как диск устремлялся вслед за ним и наоборот. Чтобы исключить
возможность увлечения диска потоками воздуха, магнит и диск были разделены
стеклом. Открытие электромагнитной индукции помогло Фарадею объяснить явление
Араго и уже в самом начале исследования записать: ''Я надеялся сделать из опыта
господина Араго новый источник электричества'' Только абсолютная убежденность в
справедливости гипотезы ''взаимопревращаемости'' может объяснить
целеустремленность и настойчивость Фарадея. Прошло целых семь лет, пока
Фарадей, и никто другой, сумел объяснить "загадку" Араго. Но прежде
он должен добиться "превращения магнетизма в электричество". 29
августа 1831 г. — памятный день не только в жизни Фарадея, но и в истории
науки. Из рисунков в лабораторном журнале видна последовательность его
заключительных экспериментов, приведших к величайшему открытию.
На деревянную катушку 4
(рис. 10, а) была намотана медная проволока 1, а между ее витками наматывалась
вторая проволока 2, изолированная от первой хлопчатобумажной нитью. Одна из
спиралей соединялась с гальванической батареей 3, другая с гальванометром 5.
При замыкании и размыкании цепи стрелка гальванометра слабо отклонялась. Но (и
это очень важное наблюдение) если ток проходил по первой спирали непрерывно,
стрелка гальванометра оставалась неподвижной. Было очевидно, что в первом
случае во вторичной цепи возникал ток. Но почему он появлялся только при
замыкании или размыкании цепи, то есть при возникновении "магнитных сил"
вокруг проводника или при их исчезновении? Чтобы выяснить свойства тока,
индуктированного во вторичной цепи, Фарадей поместил внутрь вторичной обмотки
стальную иглу 8 (рис. 10, 6) и убедился, что она намагничивается.
Следовательно, возникший
ток обладал теми же свойствами, что и ток, полученный от батареи. Эти явления
Фарадей назвал "вольтаэлектрической индукцией".
Рис. 10. Схема основных опытов при открытии электромагнитной
индукции (по рисункам Фарадея).
Но почему гальванометр
отклоняется только при замыкании и размыкании цепи? На этот вопрос в наши дни
может легко ответить любой старшеклассник, а великий экспериментатор оставался
наедине со своими сомнениями. Подозревая, что взаимодействие двух обмоток
осуществляется через окружающую среду, он заменил деревянную катушку железным
кольцом 1 (рис. 10, г). И оказалось, что стрелка гальванометра отклонялась на
больший угол, то есть окружающая проводник с током среда действовала сильнее,
когда воздух заменяло железное кольцо, легко намагничивающееся током. Так
Фарадей пришел к одному из самых фундаментальных своих открытий — установлению
активной роли среды, окружающей спирали,; то есть магнитного поля. Заметим,
кстати, что в опыте с железным кольцом и двумя спиралями можно увидеть прообраз
простейшего трансформатора (Рис. 12).
Но Фарадей знал, что
магнитное состояние среды можно изменить и без электрического тока с помощью
обычных стержневых постоянных магнитов. Он расположил два постоянных магнита
(рис. 10, д) так, что при поднятии и опускании их полюсов исчезает и возникает
магнитное поле вокруг катушки. При этом стрелка гальванометра заметно
отклоняется. Это явление Фарадей назвал "магнитоэлектрической индукцией".
Ввиду того, что между "вольтаэлектрической" и "магнитоэлектрической"
индукцией принципиальной разницы не было, позднее оба эти явления были
объединены Фарадеем термином "электромагнитная индукция". Два
заключительных эксперимента (рис. 2, е-ж) демонстрировали появление тока при
движении внутри соленоида постоянного магнита или катушки с током. При этом
особенно наглядно демонстрировалась возможность "превращения магнетизма в
электричество" — гениальная гипотеза ученого была убедительно подтверждена!А
через несколько дней Фарадей осуществил еще один эксперимент, с помощью
которого наглядно объяснил явление Араго: при вращении магнита в медном диске
наводились индуктированные токи и они, взаимодействия с полюсами магнита,
вызывали вращение диска.
Но Фарадей не был бы
Фарадеем, если бы не предложил использовать это явление на практике. Он писал: "Получив
электричество из магнетизма вышеописанным образом, я полагаю, что опыт г-на
Араго может стать новым источником получения электричества, и я надеялся,
что... мне удастся сконструировать электрическую машину". Ученый принес в
лабораторию большой подковообразный электромагнит (хранящийся до сих пор в
музее Лондонского Королевского общества), прикрепил к полюсам магнита "два
стальных бруска", а в промежуток между ними ввел край медного диска. Край
диска и его ось были соединены посредством щеток с гальванометром (рис. 11).
При вращении диска в нем возникал ток. Так была создана электрическая машина,
позднее получившая название "униполярный генератор".
Рис. 11. Схема униполярного генератора (по рисунку Фарадея).
При объяснении
возникновения тока в диске машины Фарадей вводит понятие "магнитных
силовых линий", при пересечении которых возбуждается ток. "Эти линии
магнитных сил, — писал Фарадей, — становятся доступными нашему зрению, когда мы
рассматриваем расположение железных опилок вокруг полюса магнита". Так
удивительно образно сумел он описать сложное физическое явление.
В августе 1831 г. был
сделан решающий опыт, а 24 ноября на заседании в Королевском обществе была
изложена сущность явления электромагнитной индукции. Семнадцатого октября 1831
г. Майкл Фарадей открыл явление электромагнитной индукции. Это был хорошо
подготовленный и заранее продуманный опыт. Вот как об этом писал Фарадей: ''Я
взял цилиндрический магнитный брусок и ввел один его конец в просвет спирали из
медной проволоки, соединенной с гальванометром. Потом я быстрым движением
втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра
испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка
опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись
всякий раз, как магнит вталкивался или выталкивался. Это значит, что электрическая
волна возникает только при движении магнита, а не в силу свойств, присущих ему
в покое''.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|