Общая теория
относительности - ОТО - дала качественный скачок в развитии электродинамики,
предложив уравнения Максвелла в гравитационных полях.
Некоторые соотношения
релятивистской электродинамики мало исследованы, в результате чего проблемные
вопросы физики пытаются объяснить, строя новую электродинамику, вводя новые
физические поля - торсионные, монополь - магнитную частицу, имеющую один
магнитный полюс, и т.д.
Максвелл вывел свои
уравнения математически, исследуя модель магнитного поля в виде магнитных
силовых линий, представляющих собой вихри, подобные смерчу, в эфире. Однако
магнитное поле может представлять собой и другие, более или менее сложные
движения, воздействующие на магнитную стрелку. Среда такого рода, наполненная
молекулярными вихрями с параллельными осями, отличается от обычной жидкости
тем, что она имеет различные давления в различных направлениях. Если бы она не
сдерживалась надлежащим противодавлением, то она стремилась бы растянуться в
экваторном направлении. "Среда, имеющая такого рода структуру, может быть
способна к другим видам движения и смещения, чем те, которые обслуживают
явления света и тепла; некоторые из них могут быть таковы, что они
воспринимаются нашими чувствами при посредстве тех явлений, которые они производят".
Современная физика обходится без эфира, заменив его физическим вакуумом, в
котором постоянно возникают и исчезают электрон-позитронные и фотонные пары,
появляются различного вида напряженности и моменты, обладающие энергией,
передаются поперечные колебания - электромагнитные волны и т. д. Эйнштейн
пишет: "Мы не можем в теоретической физике обойтись без эфира, т.е.
континиума, наделенного физическими свойствами, ибо общая теория
относительности исключает непосредственное дальнодействие; каждая же теория
близкодействия предполагает наличие непрерывных полей, а, следовательно,
существование эфира".
Математический формализм
уравнений электродинамики не позволяет увидеть и предсказать ранее не известные
явления без наличия модели. Моделью магнитного поля должна быть модель,
подобная модели Максвелла, математическое исследование которой привело к
созданию электродинамики.
Заключение
Если действительно, для
того, чтобы гений реализовал свой творческий потенциал, он должен родиться в
нужное время и в нужном месте, то судьба Майкла Фарадея полностью это
подтверждает. В год его рождения (1791 г.) был опубликован трактат Гальвани,
когда Фарадею исполнилось 8 лет, был создан Лондонский Королевский институт по
распространению научных знаний. Годом позже в Лондонское Королевское общество -
высший научный центр Великобритании - пришло сообщение об изобретении Вольта,
когда Фарадею было 11 лет, его учитель Гемфри Деви доказал факт разложения воды
с помощью вольтова столба и стал, таким образом, одним из основателей новой
науки - электрохимии.
До Фарадея физика
развивалась, но ее развитие шло по пути механистическому. Однако все открытия в
области электричества и магнетизма предопределили научные идеи Фарадея, а затем
математически их облекли в стройную теорию уравнениями Максвелла.
Влияние электрического
тока на магнитную стрелку обнаружил датский физик Ханс Кристиан Эрстед. Во
время лекции об электричестве и магнетизме он заметил, что магнитная стрелка
компаса уклоняется от своего направления. После лекции он установил, что вблизи
от полюса гальванического элемента.
Как только элемент
замыкался – стрелка меняла направление. Эрстед долго размышлял над этим
странным явлением: экспериментировал со стрелками и железными опилками, которые
в момент замыкания располагались кругами около провода. Наконец в 1820 году он
установил связь между магнетизмом и электричеством.
Затем было установлено,
что магнетизм сопутствует ток и в проводниках, и в электролитах, и в газах, а
это значит, что действие на магнитную стрелку – общий признак электрического
тока.
Французские физики Био и
Савар осенью того же года установили, что каждая часть проволоки с током
действует на магнитный полюс. Это исследование привело к закону взаимодействия
тока и магнитного полюса.
Одним из основоположников
новой науки – электродинамики – является Андре Мари Ампер. Работы Ампера в
области физики сразу привлекли к себе внимание. Узнав об опытах Эрстеда, он
продолжил их и установил, что два параллельных проводника притягиваются друг к
другу, если токи в них направлены в одну сторону и отталкиваются, если токи
направлены в противоположные стороны. Опыты Ампера позволили обнаружить закон,
определяющий величину и направление сил, которые действуют на проводник с
током, если он помещён между полюсами магнита, то есть в магнитном поле.
Направление силы определяют с помощью так называемого "правила правой руки".
Амперу также принадлежит гипотеза о сущности намагничивания. Он предположил,
что причину намагничивания следует искать в существовании круговых молекулярных
токов. Токи эти, подобно магнитным стрелкам, имеют два полюса и поэтому
устанавливаются в направлении намагничивания.
Учёные встретили гипотезу
Ампера доброжелательно, но она была недостаточна, потому что многое оставалось
в тени. Например, наблюдения Фарадея, как ведут себя между полюсами магнита
стержни из различных веществ. Их поведение позволило разделить все вещества на
парамагнитные и диамагнитные. Стержни первых устанавливаются между полюсами
вдоль силовых линий, стержни вторых – перпендикулярно к ним. Это явление
объяснили позже, когда стало ясно строение атома.
Магнитные исследования
Кулона помогли вывести законы взаимодействия магнитных полюсов, исследования
Ампера – закон взаимодействия проводников с тЮками, а также проводника с током
и магнита.
Некоторые из учёных
объяснили взаимодействие магнитных полюсов, магнитного полюса и тока,
проводников с током действием на расстоянии, без участия окружающей среды
(теория дальнодействия). Другие придерживались мнения Майкла Фарадея: полюса
взаимодействуют благодаря особому состоянию среды, которое вызывается
присутствием магнитного полюса или проводника с током (теория близкодействия).
После открытия и
исследования электромагнитной индукции стала очевидной возможность создать генератор,
который сможет преобразовать механическую энергию в энергию электрическую.
Первый генератор электрического тока, построенный в 1832, был весьма
несовершенен.
К этому же времени
относится начало целой серии работ М. Фарадея (1791-1867), одно лишь только
формальное перечисление, которых способно составить объемный каталог, поэтому
следует выделить наиболее значительное в этих исследованиях. Прежде всего,
открытие явления электромагнитной индукции, во-вторых, явление вращения
плоскости поляризации света в магнитном поле - первое экспериментальное
доказательство связи между светом и магнетизмом, в-третьих, введение понятия
"силового поля".
А. Эйнштейн по этому поводу
отмечал: "Идея поля была самой оригинальной идеей Фарадея, самым важным
открытием со времен Ньютона. Надо иметь могучий дар научного предвидения, чтобы
распознать, что в описании электрических явлений не заряды и не частицы
описывают суть явлений, а скорее пространство между зарядами и частицами".
Примерно с середины Х1Х
в. резко усиливаются теоретические изыскания, направленные на создание более
или менее всеобъемлющей физико-математической концепции в области
электромагнитных явлений.
Существенными
достижениями в этом отношении отличается творческая деятельность представителей
немецкой школы физиков-теоретиков - Ф.Э. Неймана (1798-1895) и В.Э. Вебера
(1804 -1891). Помимо успехов в создании первых теорий классической
электродинамики следовало бы заметить, что, по-видимому, именно Вебером впервые
была высказана гипотеза о прерывности электрического заряда и о существовании
сверхлегкой заряженной частицы (за пятьдесят лет до открытия электрона Дж.Дж.
Томсоном в 1897 г.).
Наряду с успехами
физических наук Х1Х в. может быть отмечен не меньшими (если не большими) достижениями
в области математических наук. В частности, к середине прошлого века в
достаточно совершенном виде (по крайней мере, для целей новой теоретической
физики) сформировались такие разделы математики, как векторное исчисление (хотя
сама терминология - "векторный анализ"- была введена Дж. Гиббсом
позже, в 1881 г.), вариационное исчисление, математическая физика. В этой связи
нельзя не отметить влияние на формирование научного мировоззрения П.С. Лапласа (1749-1827),
Ж.Б.Ж. Фурье (1768-1830), К.Ф. Гаусса (1777-1855), С.М. Пуассона (1781-1840), М.В.
Остроградского (1801-1861), У.Р. Гамильтона (1805-1865), Ж. Лиувилля
(1809-1882).
Таким образом,
складывалась благоприятная ситуация для создания теоретической электродинамики,
как принято говорить в таких случаях - "идеи витали в воздухе".
Роль Фарадея в человеческой
цивилизации совершенно уникальна. До него ученые - естествоиспытатели
исследовали круг явлений, известных из повседневного опыта и воспринимаемых
каким-либо из пяти органов чувств человека. Фарадей же открыл новый вид
материи, органами чувств не воспринимаемый - электоромагнитное поле, положив
новые пути развития науки и техники.
Черту подвел Д.К.
Максвелл, который в период с 1860 г. по 1865 г. обобщил всю сумму экспериментальных
данных и предложил в виде системы уравнений теорию электромагнитного поля,
выражающую все основные закономерности электромагнитных явлений. Элементами
новизны в этой теории были введенное им понятие тока смещения, а также
предсказание ряда эффектов - существование в свободном пространстве
электромагнитного излучения (волн), распространение электромагнитных волн в
пространстве со скоростью света. Справедливости ради стоит отметить, что Л.В.
Лоренц, не имея информации о работах Максвелла, чуть позже, в 1867 г., во многом
повторил результаты последнего. Существенным достижением обоих исследователей
является неопровержимое установление электромагнитной природы света, т.е.
логическое завершение связи между оптическими и электромагнитными явлениями.
Вклад Максвелла сводится
к следующему:
1. Теория Максвелла
вводит в физику фундаментальное понятие единого электромагнитного поля. Введение
понятия поля как основного объекта, обеспечивающего все электромагнитные
взаимодействия, акцент не на заряды и токи, а на ''порожденное'' ими поле
означают окончательное утверждение в физике идеи близкодействия.
2. Теория Максвелла
исходит из признания конечности скорости распространения электромагнитных
взаимодействий. Из этого вытекает, что сигнал, испущенный источником, но не
принятый приёмником, живет самостоятельной жизнью как реальное образование,
обладающее энергией, которая, по Максвеллу, сосредоточена в поле. Энергия
электромагнитного взаимодействия зависит от параметров поля (Е и В), это есть
энергия поля, а не энергия зарядов и токов. Но энергия не может быть без
материального носителя. Следовательно, поле является объективной реальностью.
3. Теория Максвелла
по-новому поставила вопрос о взаимосвязи электричества и магнетизма. Их
единство проявляется том, что изменяющееся электрическое поле порождает
магнитное, а изменяющееся магнитное порождает электрическое, т. е.
электрические и магнитные поля есть частные проявления единого
электромагнитного поля.
4. Теория Максвелла на
основе понятия поля свела в единую систему все знания по электричеству и
магнетизму. Она дала возможность, зная компоненты поля (Е и В) в данной точке в
данный момент времени, найти их значения в любой другой точке в любой другой
момент времени, а зная характеристики поля, найти и силы, действующие на заряды
и токи. Все законы электрических и магнитных взаимодействий, все законы тока,
выведенные раньше, получаются из уравнений Максвелла как следствия.
5. Из решения уравнений
вытекает, что электромагнитное поле распространяется в пространстве в виде волн
и скорость электромагнитных волн равна скорости света. Тем самым
устанавливается не только существование нового объекта, но и выдвигается идея
об электромагнитной природе света, а значит, устанавливается единство оптики и
электромагнетизма.
Теория электромагнитного
поля Максвелла знаменовала собой начало нового этапа в физике. Именно на этом
этапе развития физики электромагнитное поле стало реальностью, материальным
носителем взаимодействия. Мир постепенно стал представляться
электродинамической системой, построенной из электрически заряженных ччастиц,
взаимодействующих посредством электромагнитного поля.
Большинство физиков
высоко оценили теорию Максвелла. Пуанкаре считал её ''вершиной математической
мысли''. ''Самым увлекательным предметом во время моего учения была теория
Максвелла. Переход от сил дальнодействия к полям, как к основным величинам,
делал эту теорию революционной'', - писал А.Эйнштейн. Но теории Максвелла ещё
предстояло утвердить себя.
Модель силового поля
рождается в электродинамике Максвелла, точнее Фарадея-Максвелла, поскольку
основы модельного слоя были заложены Фарадеем на основе модели силовых линий, а
математический слой был разработан Максвеллом. Исходя из концепции
близкодействия, Фарадей перенес центр тяжести своих исследований с
электрических и магнитных тел на пространство между этими телами.
"Магнитным полем, -
пишет Фарадей, - можно считать любую часть пространства, через которую проходят
линии магнитной силы... Свойства поля могут изменяться от места к месту по
интенсивности силы, как вдоль линий, так и поперек последних". Эту линию
последовательно развил Дж. Максвелл. Он изначально исходит из новой модели
поля, суть которой составляют "электрические силовые линии, существующие
вне порождающих их зарядов.". И над этой моделью надстроил математический
слой с помощью аналоговых гидродинамических моделей, жестко связанных со своим
математическим слоем. "Формирование этого языка открывало путь к
построению основ для исследования принципиально новых законов действия
электрических и магнитных сил, включая физические процессы их взаимопревращения
и распространения в пространстве (электромагнитных волн). … Такие физические
процессы, вообще говоря, были просто бессмысленны с точки зрения понимания силы
как причины ускорения материальной точки;...".
Основные новые моменты
модели, унаследованные от Фарадея, - система-поле (представляющее собой
заполняющую пространство среду из силовых линий), состояния которого
определяются значениями напряженностей электрической и магнитной составляющих -
новых измеримых величин. Важнейшим шагом на этом пути было определение
процедуры измерения характеристик поля посредством пробного заряда и пробного
витка с током.
Одно лишь только
формальное перечисление работ М. Фарадея способно составить объемный каталог,
поэтому следует выделить наиболее значительное в этих исследованиях.
Прежде всего, открытие
явления электромагнитной индукции, во-вторых, явление вращения плоскости
поляризации света в магнитном поле - первое экспериментальное доказательство
связи между светом и магнетизмом, в-третьих, введение понятия "силового
поля". А. Эйнштейн по этому поводу отмечал: "Идея поля была самой
оригинальной идеей Фарадея, самым важным открытием со времен Ньютона. Надо
иметь могучий дар научного предвидения, чтобы распознать, что в описании
электрических явлений не заряды и не частицы описывают суть явлений, а скорее
пространство между зарядами и частицами".
К настоящему времени не
установлено ни единого экспериментального факта, который позволил бы усомниться
в справедливости электромагнитной теории Фарадея-Максвелла. Однако не
существует до сих пор и строгого вывода основных соотношений этой теории.
Поскольку электрон был открыт значительно позже (Дж.Дж. Томсоном в 1897 г.), а дискретность же электрического заряда и его величина были установлены позднее (Р.Э.
Милликеном в 1910-1914 гг.), то в основе теории Максвелла лежали представления
о "заряде-жидкости", т.е. теория Максвелла – это, прежде всего,
макроскопическая электродинамика.
Литература
1.
Генезис
теоретических знаний в классической науке -
http://ru.philosophy.kiev.ua/library/stepin/04.html.
2.
Дягилев Ф. М., Из
истории физики и истории её творцов. - М.: Просвещение, 1986.
3.
Веселовский О.
Н., Шнейберг Я. А., Очерки по истории электротехники. - М.: Издательство МЭИ,
1993.
4.
Волькенштейн М.
В., Молекулярная оптика, М. – Л., 1951.
5.
Вонсовский С. В.,
Магнетизм, М., 1971.
6.
Вонсовский С. В.,
Магнетизм микрочастиц, М., 1973.
7.
Калашников С. Г.,
Электричество, М., 1964 (Общий курс физики, т. 2).
8.
Каменецкий М. О.,
Ганс Христиан Эрстед, "Наука и техника", 1957, № 18.
9.
Кудрявцев
П.С.Курс истории физики. Электромагнетизм - М, 1959.
10.
Карцев В.Л.
Максвелл. М., 1974.
11.
Курс физики, под
ред. Н. Д. Папалекси, т. 2, М. — Л., 1948;
12.
Ландсберг Г. С.,
Оптика, 4 изд.,. М., 1957 (Общий курс физики, т. 3).
13.
Лебединский А.
В., Роль Гальвани и Вольта в истории физиологии, в кн.: Гальвани А. и Вольта
А., Избр. работы о животном электричестве, М.—Л., 1937.
14.
Максвелл Д. К..
Избранные сочинения по теории электромагнитного поля. - М.Техиздат, 1954.
15.
Мощанский В. Н.,
Савелова Е. В., История физики в средней школе. - М.: Просвещение, 1981.
16.
Радовский М. И.,
Михаил Фарадей. Биографический очерк, М. – Л., 1946.
17.
Славин Фарбер. "Гений
творит то, что должен". –fizmag.narod.ru
18.
Степин В.С.
Становление научной теории. Минск: БГУ, 1976.
19.
Менцин Ю.Л.
Теория электромагнитного поля: от Фарадея к Максвеллу. В кн.: Физика IX-XX вв.
в общенаучном и социокультурном контекстах. Физика XIX в. М.: Наука, 1995.
20.
Столетов А.Г.
Собр. соч., т. 2, 1941.
21.
Тамм И. Е.,
Основы теории электричества, 7 изд., М., 1957.
22.
Тяпкин А. А.,
Шибанов А. С., Пуанкаре. - М.: Молодая гвардия, 1982.
23.
Фарадей М.,
Экспериментальные исследования по электричеству, пер. с англ., т. 1, -М., 1947.
24.
Фарадей М.
Экспериментальные исследования по электричеству. Тт. 1-3, М.: АН СССР,
1947-1959, т.3
25.
Физические основы
электротехники, под общ. ред. К. М. Поливанова, М. — Л., 1950.
26.
Фриш С. Э.,
Оптические спектры атомов, М. – Л., 1963.
27.
Храмов Ю. А.,
Физики: Биографический справочник.- М.: Наука, Главная редакция
физико-математической литературы,1983.
28.
Шнейберг Я.А.
Переплетчик, ставший академиком.//"ЭЭергия" 2002, № 2.
29.
Экспериментальные
исследования по электричеству, т. 1–3, - М., 1947.
30.
Энциклопедический
словарь юного физика/Сост. В. А. Чуянов.- М.: Педагогика-пресс, 1997.
31.
Энциклопедический
словарь юного математика / сост. А. П. Савин.- М.: Педагогика-Пресс, 1997.
32.
Эйнштеин. А.
Собрание научных трудов. Том 2,М.Наука, 1966, с.160.
33.
http://www.krugosvet.ru/articles/04/1000472/1000472a1.htm
34.
http://fizmag.narod.ru/pages/rus5.html
35.
http://historic.ru/books/item/f00/s00/z0000027/st030.shtml
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|