Меню
Поиск



рефераты скачать Исследование методов наблюдения доменов в тонких ферромагнитных пленках


1.4 Атомные магнитные структуры


Итак, в случае твердых тел – кристаллов обменные силы в зависимости от их знака могут благоприятствовать как параллельной ориентации атомных магнитных моментов – в этом случае мы будем иметь дело с ферромагнетиком (рисунок 3), так и антипараллельной ориентации – тогда получаем антиферромагнетик. Если при антипараллельной ориентации происходит полная компенсация магнитных моментов и суммарный магнитный момент (а следовательно и намагниченность) равен нулю, мы имеем дело с так называемым скомпенсированным антиферромагнетизмом или просто с антиферромагнетизмом (рисунок 4).









Рисунок 3 - Типичная картина атомной магнитной структуры ферромагнетика. Все атомные магнитные моменты параллельны и направлены в одну сторону (коллинеарная магнитная структура)










Рисунок 4 - Типичная картина атомной магнитной структуры антиферромагнетика. Атомные магнитные моменты образуют две одинаковые магнитные подрешётки (штриховая и не штриховая линии) с равными, но противоположно направленными намагниченностями (коллинеарная магнитная структура, случай скомпенсированного антиферромагнетизма).


В этом случае, когда нет такой компенсации (это может быть из-за неравного числа атомов с правыми и левыми спинами или с неравными антипарралельными моментами соседних атомов в сплаве или соединении), мы имеем дело с нескомпенсированным антиферромагнетизмом или с ферромагнетизмом (произошло от слова ферриты) (рисунок5).











Рисунок 5 - Типичная картина атомной магнитной структуры антиферромагнетика. Атомные магнитные моменты образуют две различные магнитные подрешётки (штриховая и не штриховая линии) с неравными и противоположно направленными намагниченностями (стрелки, направленные вниз, длиннее стрелок направленных вверх; коллинеарная магнитная структура, случай не скомпенсированного антиферромагнетизма).


Приведенные рисунки дают примеры простейших коллинеарных ферро-, антиферромагнитной (скомпенсированной) и ферромагнитной структур [3, с. 60-63].

Были открыты ферро-, ферри- и антиферромагнетики, атомные магнитные структуры которые существенно отличаются от простейших коллинеарных структур, наблюдаемых только в железе, кобальте, никеле, гадолинии и их многочисленных сплавах и соединениях. Оказалось также, что атомный магнитный порядок характерен не только для кристаллических твердых тел, он был обнаружен и в так называемых аморфных телах, наиболее типичными из которых являются металлические стекла (metglasses), например соединение железа с бором, фосфором и др. Могут быть и такие случаи, когда мы имеем кристаллическое вещество, то спины и соответствующие им атомные магнитные моменты по упорядочению расположенных в пространстве атомов кристаллической решетки по своим направлениям распределены совершенно беспорядочно (как в парамагнитном газе). Такие твердые тела называют, по аналогии с аморфными твердыми телами, спиновыми или магнитными стеклами. Это тоже один из примеров сильномагнитных веществ.

Опыт показал, что могут быть ферро- и антиферромагнетики, у которых очень много магнитных подрешеток (это совокупность узлов решетки, в которых находятся атомы или ионы с параллельными магнитными моментами) и магнитные моменты которых образуют не простую коллинеарную ферро- и антиферромагнитную (или ферромагнитную структуру). Коллинеарной называется такая структура, при которой магнитные моменты в различных магнитных подрешетках направлены вдоль или против одной и той же оси, как это изображено на рисунках 3-5.

При неколлинеарных структурах возможны антиферромагнитное треугольное распределение намагниченностей подрешеток, антиферромагнитное винтовое или ферромагнитное винтовое по конической поверхности (рисунок 6). Возможны еще более сложные неколлинеарные структуры.

Обменные силы, ответственные за ориентацию спинов в кристалле, могут давать только строго параллельную или антипараллельную структуру.

Оказалось, что это заключение справедливо только в тех случаях, когда нет резкого различия в энергиях обменного взаимодействия для соседних магнитно-активных ионов в кристаллических решетках с существенно отличающимися взаимными расстояниями по различным осям кристалла, т.е. когда нет резкой анизотропии этих расстояний [3, с. 64-67].


















Рисунок 6 - Типичные примеры не коллинеарных атомных магнитных структур: а) антиферромагнитная треугольная; б) антиферромагнитная винтовая плоская; в) ферромагнитная винтовая по конической поверхности.


1.5 Опыты по определению носителя ферромагнетизма


Из чистых химических элементов ферромагнитными свойствами обладают железо, никель, кобальт, гадолиний. При очень низких температурах ферромагнитны эрбий, диспрозий, тулий, гольмий и тербий.

Самым распространенным ферромагнитным элементом является железо (от латинского ferrum – железо), отсюда и название – ферромагнитные тела, ферромагнетизм.

Ферромагнитными могут быть сплавы как из самих ферромагнитных элементов, так и их сплавы с неферромагнитными элементами. Кроме того, известны ферромагнитные сплавы из не ферромагнитных элементов. Такие сплавы носят название «гейслеровых».

Элементарными носителями магнетизма являются орбитальные и спиновые моменты электронов. Которые же из них, или те и другие, приводят к ферромагнетизму?

Ответ на этот вопрос был получен с помощью магнитно-механических опытов, основанных на следующем. Электрон вследствие вращения его вокруг ядра и вокруг своей оси, кроме магнитного момента, обладает также некоторым механическим моментом вращения. Под механическим моментом тела понимают величину, равную произведению его массы на скорость и на радиус вращения, т.е. механический момент


М = m·V·r (12)


где m – масса вращающегося тела,

V – его скорость,

r – расстояние этого тела от оси вращения.

Величина орбитального механического момента выражается формулой (3):


Р = n (h/2p)


где n – целое число (n = 1, 2, 3 …)

Свойство принимать не любые, а только некоторые определенные значения, распространяются и на другие характеристики атома. Так например, радиус орбиты электрона не может быть любым, а может принимать только некоторые значения. Вполне определенные значения могут принимать также энергия и скорость электрона и т.д. Вообще параметры, характеризующие свойства атома, изменяются не непрерывно, а «ступенчато».

Поэтому говорят, что одно из основных свойств атома – это дискретность его свойств, т.е. способность принимать не любые, а только некоторые избранные значения характеризующих его физических величин.

Что касается величины механического момента электрона, обусловленного вращением его вокруг своей оси (механический момент спина), то она всегда оказывается равной 1/2·h/2p, т.е. половине наименьшего орбитального механического момента.

Первый опыт определения носителя ферромагнетизма был осуществлен в 1916 г. Эйнштейном и Де-Гаазом, а затем многократно повторялся многими исследователями. Чтобы понять сущность этого опыта, рассмотрим некоторые примеры из механики. В механике известен закон, называемый законом сохранения момента количества движения. Этот закон гласит, что если на тело извне не действуют никакие вращательные силы, то момент количества движения или механический момент его остается величиной неизменной.

Вспомним, как акробат делает сальто (рисунок 7). Подпрыгнув и придав вращательное движение своему телу, он затем подбирает тело, поджимая руки и ноги. Этим самым уменьшается расстояние некоторых частей тела от оси, вокруг которой получил вращательное движение акробат. Так как извне при этом на него никакие вращательные силы не действуют, то механический момент его сохраняется, т.е. произведение массы тела на скорость и на радиус от оси вращения не меняется. Но радиус вращения уменьшился, поэтому при постоянной массе должна увеличиться скорость вращательного движения. И действительно, поджимая руки и ноги, акробат быстро переворачивается в воздухе и затем, выпрямляя корпус, замедляет вращательное движение и становятся на ноги (рисунок 7).












Рисунок 7 - Сальто.


Интересный и очень поучительный опыт можно провести на так называемой скамье Жуковского с велосипедным колесом. Скамья Жуковского представляет собой небольшую площадку, которая легко вращается около вертикальной оси. Если на такую площадку поставить человека, дав ему в руки быстро вращающееся на вертикальной оси велосипедное колесо, то такая система будет обладать некоторым механическим моментом.

Если теперь человек, стоя на скамейке, повернет ось велосипедного колеса на 1800, то по закону сохранения механического момента сам человек на скамье начнет вращаться в ту сторону, в которую ранее вращалось велосипедное колесо (рисунок 8).












Рисунок 8 - Опыт со скамьёй Жуковского


Опыт Эйнштейна и Де-Гааза подобен описанному выше опыту со скамьей Жуковского и велосипедным колесом.

В самом деле, если ферромагнетизм обусловлен орбитальными магнитными моментами электронов, то в сильно намагниченном железе они должны быть сориентированы одинаково. Плоскости орбит должны быть параллельны друг другу, и все электроны должны вращаться по орбитам в одну и ту же сторону. Дело обстоит так, как если бы в куске намагниченного железа большое количество маленьких велосипедных колес вращалось в одну и ту же сторону. Если теперь этот кусок железа перемагнитить, то, очевидно, все электроны по орбитам должны начать вращаться в противоположную сторону, что соответствует в опыте со скамьей Жуковского повороту оси велосипедного колеса на 1800. Мы уже видели, что в этом случае сама скамья вместе с человеком начинает вращаться в ту сторону куда раньше вращалось колесо. То же, очевидно, произойдет и с куском железа при перемагничивании. Перемагнитив кусок железа, мы заставляем электроны по орбитам вращаться в сторону, противоположную их первоначальному вращению. При этом сам кусок перемагниченного железа должен начать вращаться в ту сторону, куда прежде, до перемагничивания, вращались электроны по своим орбитам.

Перемагничивание образца (например, из железа) можно осуществить легко, если вспомнить, что электрический ток, протекая по проводнику, создает магнитное поле. Практически это делается так. Образец помещают в соленоид, через который пропускают достаточно сильный ток. Тогда внутри соленоида создается сильное магнитное поле и помещенный внутри него образец намагничивается. Для перемагничивания следует, очевидно, переменить направление тока в катушке.

Если внутри соленоида подвесить на нити железный цилиндр и его намагнитить пропусканием тока в соленоиде, то при изменении направления тока в соленоиде железный цилиндр перемагнитится и начнет, закручивая нить, поворачиваться в сторону, куда раньше вращались электроны. Следует отметить, что угол закручивая нити будет очень небольшой; чтобы его обнаружить, к нити прикрепляют очень легкое зеркальце и на сравнительно большом расстоянии наблюдают отклонение от него светового зайчика (рисунок 9).










Рисунок 9 - Схема опыта Эйнштейна и Де-Гааза.


Так будет, если ферромагнетизм обусловлен только орбитальными магнитными моментами электронов. Если же ферромагнетизм связан только со спиновыми магнитными моментами, то в намагниченном куске железа все электроны будут вращаться в одном и том же направлении вокруг своей оси. При перемагничивании железа они начнут вращаться в сторону, противоположную их первоначальному вращению, заставляя тем самым весь кусок железа вращаться в ту сторону, в которую вращались электроны до перемагничивания. Очевидно, световой зайчик, отброшенный прикрепленным к нити зеркальцем, и в этом случае изменит свое положение. Независимо от того, обусловлен ли ферромагнетизм только орбитальными или только спиновыми магнитными моментами, или теми и другими, в рассмотренных случаях при перемагничивании кусок железа начнет поворачиваться и закручивать нить, на который он подвешен.

Однако сила закручивания будет различной и вот почему. Как уже указывалось выше (смотри формулу (2)), магнитный момент электронной орбиты m равен числу магнетонов Бора, т.е. m = n·m. Механический же момент Р, связанный с орбитальным вращением электрона, равен целому числу h/2p (согласно формуле 3):


Р = n(h/2p)


Таким образом, отношение орбитального магнитного момента к орбитальному механическому моменту равно


(m/Р)= 2pm/h (13)


Что касается отношения магнитного момента спина, равного магнетону Бора, m , к его механическому моменту, равному (1/2) (h/2p), то оно составляет

(m/Р) = 4pm/h (14)


т.е. оказывается вдвое большим, нежели для электронной орбиты.

В указанном опыте Эйнштейна и Де-Гааза при перемагничивании можно измерить изменение как механического момента количества движения, так и магнитного момента, и взять их отношение. Многократно проведенные тщательные исследования показывают, что это отношение равно 4pm/h. Таким образом, из эксперимента следует, что ферромагнетизм обусловлен не орбитальными а спиновыми магнитными моментами, именно они при определенных условиях устанавливаются в веществе так что возникает ферромагнетизм. Об этих условиях будет сказано ниже.


1.6 Природа ферромагнетизма


Из предыдущего параграфа следует, что элементарными носителями ферромагнетизма являются электронные спины. Однако возникает вполне законный вопрос почему же электронные спины создают ферромагнетизм не во всех веществах, а только в некоторых, причем очень немногих? Почему ферромагнитны железо, никель, почему не ферромагнитны медь и серебро? Ведь и в атомах меди электроны вращаются вокруг ядра, обладая орбитальными магнитными моментами, и в атомах меди электроны вращаются вокруг своей оси и, таким образом, обладают спиновыми магнитными моментами.

Ответ следует, очевидно, искать в специфике атомного строения ферромагнитных веществ.

В атоме с достаточно большим порядковым номером вокруг ядра вращается значительное количество электронов. При вращении вокруг ядра электроны располагаются некоторыми слоями. Максимальное число электронов в слое (оболочке) равно 2n2, где n – порядковый номер слоя. Так, например, в первом слое электронов может быть всего 2, во втором слое 2·22, или 8, а в третьем 2·32, или 18, а в четвертом 32 электрона и т.п.

При переходе от одного атома к другому в порядке увеличения его атомного номера с меньшими порядковыми номерами и лишь потом начинают заполняться более отдаленные слои. Так, в атоме водорода всего один электрон, и он будет находиться в первом электронном слое. Атом гелия (его порядковый номер два) имеет два электрона, и они оба находятся в первом слое. У химического элемента лития, имеющего порядковый номер три, - три электрона. Эти электроны не могут быть размещены в первом слое, поскольку, как указывалось выше, максимальное количество электронов, которое может быть в первом слое, равно двум. Следовательно, третий электрон в атоме лития расположен во втором слое. У следующих по порядку элементов – бериллия, бора, углерода и т.д. – будет все больше и больше заполняться второй слой. У неона, имеющего порядковый номер десять, этот слой окажется полностью заполненным. Очевидно, у следующего элемента – натрия – начинает заполняться третий слой.

В слоях следует различать подслои. Первый подслой носит название s–подслоя и находящиеся в нем электроны называются s-электронами. Второй подслой называется p-подслоем, третий – d-подслоем, четвертый – f-подслоем. Соответственно этому имеем s, p, d, или f-электроны. Согласно квантовой теории, число электронов в каждом подслое должно быть ограничено. Так, в s-подслое их будет не более двух, в p-подслое – не более 6, в d-подслое – не более 10, в f-подслое число их не может превышать 14. Максимальное число электронов в слое равно 2n2, поэтому можно подсчитать также, какое число подслоев имеет каждый слой.

Первый слой, содержит всего 2 электрона, не имеет подслоев. Второй слой, который может иметь 8 электронов, имеет два подслоя: s-подслой (с двумя электронами) и p-подслой (с шестью электронами). Для обозначения того, в каком подслое какого слоя находится электрон, обозначают номер слоя числом, за которым ставят букву, обозначающую подслой. Например, запись 2s означает, что электрон принадлежит к первому подслою второго слоя, а запись 4d означает, что электрон принадлежит к третьему подслою четвертого слоя (таблица 1).

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.