Меню
Поиск



рефераты скачать Альтернативные источники энергии

В нашей стране 50-е годы явились новым этапомдальнейшего расширения работ в области использования энергии ветра. В августе 1954 г. Совет Министров СССР принимает развернутое постановление о дальнейшем развитии ветроэнергетики и расширение масштабов использования ресурсов ветра, которым были определены задания по организации исследований, разработке новых конструкций ветроагрегатов, их производству и внедрению в народное хозяйство, улучшению эксплуатации. Была создана Центральная научно-исследовательская лаборатория по ветродвигателям (ЦНИЛВ), группы или лаборатории ветроэнергетики в ряде республиканских научно-исследовательских и проектных институтов. Основное внимание в этот период уделялось использование энергии ветра в сельскохозяиственном производсте.

Уже в середине 50-х годов резко возрос выпуск ветроэнергетического оборудования различных типов  только в 1956 г. было произведено 9 тыс. ветродвигателей. Одновременно во Всесоюзном НИИ электрификации сельского хозяйства (ВИЭСХ) расширились исследования в области эксплуатации ветроустановок, их агрегатирования с рабочими машинами и генераторами  по вопросам аэродинамики расширились работы в ЦАГИ. Разработками ветроэнергетического кадастра, вопросов аккумулирования энергии, новых методов расчета конструкции и оптимизации сфер применеия, исследованиями в области повышения надежности и эффективности эксплуатации был занят ряд центральных и республиканских институтов и организаций. Были изобретены новые системы регулирования ветродвигателей, разработаны эффективные методы использования ВЭС, конструкции ветроагрегатов различного назначения, в том числе для пастбищного водоснабжения «Беркут» с электронасосом повышенной частоты, УВЭУ-(1-4)-6 (ныне АВЭУ-6), снабженный погружным электронасосом с двигателем промышленной частоты, ВБ-3Т с насосом вибрационного типа и ряд других. В Казахстане была сооружена многоагрегатная ВЭС мощностью 400кВт, построены и испытаны образцы агрегатов и станций мощностью от 0,2 до 30 кВт.В 1971 году на ряде заводов был организован выпуск опытных партий агрегатов четырёх типов и проведена их эксплуатационная проверка на пасдбищах Чёрных земель Кизлярских степей ив других зонах. Продолжались работы над созданием ветрооогрегата Вихрь с пневмотическим насосом, электрических агрегатов Сокол и УВЕУ-(8-16)-12 мощностью 15 кВт а так же разрабатывались  проекты более мощных экспериментальных ВЭС до 100кВт предназначенных для комплексного использование.

По неполным данным ЮНЕСКО, в 1960г. в мире насчитывается более 1 млн ВЭС различных типов и назначение, в том числе более полумиллиона  быстроходных ветроэлектрических  агрегатов. Большинство ветродвигателей использовалось в системах сельскохозяйственного водоснабжения, для зарядки аккумуляторных батарей и пмиания энергией небольших объектов, на линиях радиорелейной связи и для других целей в районах с благоприятным ветровым режимом, удаленных от источников централизованного энергоснабжения, В 1968 г. только в Австралии эксплуатировалось почти 250 тыс. ветроустановок.

В годы так называемого «энергитического кризиса» (начало 70-хгодов), вызванного увеличением во всем мире потребления энергии, постепенным сокращением запасов традиционных энергоресурсов и ростом цен на жидкое топливо, во многих странах резко расширились работы по использованию возобновляющихся источников энергии, в первую очередь Солнца, ветра, теплоты недр Земли  и др. В соответствии с национальными энергетическими программами созданы новые более эффективные ветроустановки и станции с единичной мощностью до 2-3 Мвт, ведутся разработка новых конструкций и поиск экономичных  технологий преоброзования энергии ветра в электрическую, химическую энергию и теплоту. По существу ставится и решается проблема  технического перевооружения этого направления энергетики на основе широкого использования результатов фундаментальных и прикладных исследований, внедрения достижений НТР.

Дальнейшее развитие ветроэнергетики как отрасли науки и техники, разрабатывающей теоритические основы , методы и средства использования энергии ветра для производства механической, электрической энергии и теплоты, является важной народнохозяйственной проблемой. Одна из задач отрасли- на каждом из этапов развития страны определять масштабы целесообразного использования ветровой энергии в народном хозяйстве.Из двух составных частей ветроэнергетики- ветротехники и ветроиспользования – первая призвана разрабатывать теоретические основы и совершенствовать практические приемы проектирования технических средств, вторая – обосновывать и решать  теоретические и практические вопросы оптимального использования ресурсов ветровой энергии, рациональной эксплуатации установок, определения их технико- экономических показателей, обобщения и распространения опыта применения ветроустановок в различных отраслях, зонах и условиях, чтобы решить главную задачу – обеспечить потребность страны в энергии.


§1.2ВЕТЕР КАК ИСТОЧНИК ЭНЕРГИИ.


Ветер в приземном слое образуется вследствие неравномерного нагре­ва земной поверхности Солнцем. Поскольку поверхность Земли неодно­родна, то даже на одной и той же широте суша и водные пространства, горы и лесные массивы, пустыни и болотистые низины нагреваются по-разному. В течение дня над морями и океанами воздух остается сравни­тельно холодным, поскольку значительная часть энергии солнечного излу­чения расходуется на испарение воды или поглощается ею. Над сушей воздух прогревается больше, расширяется, снижает свою массовую плот­ность и устремляется в более высокие слои над землей. Его замещают бо­лее холодные, а следовательно, более плотные воздушные массы, распо­лагавшиеся над водными пространствами, что и приводит к возникнове­нию ветра как направленному перемещению больших масс воздуха. Эти местные ветры, образующиеся в прибрежных зонах, носят название бри­зов. Годовые изменения температуры в береговых районах больших мо­рей и океанов вызывают циркуляцию более крупного масштаба, чем бри­зы, называемые муссонами. Они делятся на морские и материковые, от­личаются, как правило, большими скоростями и в течение ночи меняют свое направление. Аналогичные процессы происходят в гористых местах и долинах вследствие разных уровней нагрева экваториальных зон и полю­сов Земли и многих других факторов. Характер циркуляции земной ат­мосферы усложняется вследствие сил инерции, возникающих при враще­нии Земли. Они вызывают различные отклонения воздушных течений, об­разуется множество циркуляции, в большей или меньшей мере взаимо­действующих между собой.

Сила и направление ветра в различных зонах по-разному изменяются в зависимости от высоты над поверхностью Земли. Так, на экваторе близко к земной поверхности расположена зона с относительно небольшими и переменными по направлению скоростями ветра, а в верхних слоях возни­кают достаточно большие по скорости воздушные потоки в восточном направлении. На высоте от 1 до 4 км от поверхности Земли, в зоне между 30° северной и южной широт образуются достаточно равномерные воз­душные течения, называемые пассатами. В северном полушарии ближе к поверхности Земли их средняя скорость составляет 7 — 9 м/с.

Вокруг зоны пониженного давления образуются крупномасштабные циркуляции воздушных масс — в северном полушарии против направле­ния движения часовой стрелки, а в южном — по направлению ее движе­ния. Вследствие наклона 23,5° оси движения Земли к плоскости ее враще­ния относительно Солнца происходят сезонные изменения тепловой энер­гии, получаемой от него, величина которых зависит от силы и направле­ния ветра над определенной зоной земной поверхности. 36

На относительно большой высоте над поверхностью Земли (в среднем 8-12 км) в тропосфере возникают достаточно равномерные и мощные воздушные течения, получившие название струйных. Их образование вызвано особенностями высотной атмосферной циркуляции, поэтому характеристики струйных течений существенно отличаются от параметров приземного ветра.

Размеры струйных течений в поперечнике достигают 400-600 км, а протяжен­ность - др 1000 км. Обычно они не подвержены большим сезонным изменениям, но могут менять свое расположение по высоте. Так, над Восточной Сибирью и Чу­коткой они иногда опускаются до высоты 3-4 км от поверхности Земли. Ско­рости воздушных масс в ядре струйного течения составляют 30-80 км/ч, но часто доходят до 200 км/ч.

Таким образом, тепловая энергия, непрерывно поступающая от Солнца, преобразуется в кинетическую энергию движения в атмосфере огромных масс воздуха, циркуляция которых и называется ветром.


ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕТРА

Ветер является одним из наиболее мощных энергетических источников, который издавна используется человеком, и при благоприятных условиях может быть утилизован в интересах народного хозяйства в значительно больших масштабах, чем это имеет место в настоящее время. По ориенти­ровочным оценкам, энергия,'которая непрерывно поступает от Солнца, соответствует суммарной мощности, превышающей 1011 ГВт. Это опре­деляет возможную годовую выработку энергии ветроагрегатами, равную 1,18 • 1013 кВт -ч, что во много раз превышает количество энергии, потреб­ляемой сегодня в мире. По оценкам МИРЭК, ежегодно в мире потребляет­ся около 3 млрд. т условного топлива. В развитых странах потребление достигло 0,6 т условного топлива в год на одного человека, в развиваю­щихся - в 3 раза меньше.

Энергетические установки обычно используют ветер в приземном слое на высоте до 50 - 70 м, реже - до 100 м от поверхности Земли, поэтому наибольший интерес представляют характеристики движения воздушных потоков именно в этом слое. В дальнейшем, по мере создания соответ­ствующих технических средств, могут оказаться практически ценными также струйные течения, характерные для тропопаузы.

Важнейшей характеристикой, определяющей энергетическую цен­ность ветра, является его. скорость. В силу ряда метеорологических факто­ров (возмущения атмосферы, изменения солнечной активности, коли­чества тепловой энергии, поступающей на Землю, и других причин), а также вследствие влияния рельефных условий непрерывная длительность ветра в данной местности, его скорость и направление изменяются по слу­чайному закону. Поэтому мощность, которую может вырабатывать ветро-установка в различные периоды времени, удается предсказывать с очень малой вероятностью. В то же время суммарную выработку агрегата, осо­бенно за длительный промежуток времени, можно рассчитать с высоким уровнем достоверности, так как средняя скорость ветра и частота распре­деления скоростей в течение года или сезона изменяются мало.

Единицами измерения скорости в СССР являются метр в секунду (м/с) и километр в час   (км/ч), за рубежом применяют также миля в час(1 миля/ч = 0,44 м/с). Направление вектора скорости измеряется в граду­сах или румбах и показывает его угловое положение относительно направ­ления (обычно северного), принятого за начало отсчета.

Для измерения мгновенной скорости ветра, т.е. пути воздушного пото­ка, пройденного им за промежуток времени, измеряемый секундами или даже долями секунд, пользуются анемометрами различных конструкций. Чем меньше интервал времени усреднения скорости, тем менее инерцион­ным должно быть ветроприемное устройство анемометра. Поэтому для подобных измерений используют специальный класс приборов - мало­инерционные.

Усредненную за более длительные промежутки (несколько десятков се­кунд или минут) скорость потока измеряют анемометрами и интегрирую­щими устройствами разнообразных типов, которые имеют также приборы для получения визуальных отсчетов и регистрирующую часть, обеспечи­вающую запись скоростей на ленту. Погрешность измерения скорости анемометром может доходить до 5 —7%, поэтому в тех случаях, когда тре­буется большая точность, например при испытаниях в аэродинамической трубе ветродвигателей и их моделей, используют трубку Пито, соединен­ную с микроманометром. На некоторых метеостанциях наряду с анемо­метром иногда еще используют флюгер Вильда, но он не дает требуемой точности измерений скорости, и практически для получения данных с целью проведения энергетичееких расчетов он непригоден.

Мгновенная скорость ветра часто определяет динамическое воздейст­вие воздушного потока на ветродвигатель. Динамические характеристи­ки потока, его порывы влияют на работу автоматических систем регули­рования и ориентации. Количество энергии, которую может выработать ветроагрегат, зависит в первую очередь от усредненной скорости ветра за определенный интервал времени и по всему сечению потока, равному площади поверхности, ометаемой ветроколесом. Именно эта скорость в основном определяет также режимы работы агрегата.

Средняя скорость ветра v за выбранный промежуток времени Т = t2—t1 определяется отношением суммы измеренных значений мгновен­ной скорости Vj к числу измерений n:


 Среднесуточную скорость vсут находят делением на 24 суммы среднеча­совых скоростей v4, а среднегодовую vr — делением на 365 суммы всех

vcyT за год.

Средние значения скоростей в рассматриваемом районе, как правило, определяют по данным наблюдений на метеостанциях, а в ряде случаев — по материалам анеморазведок. В зависимости от категории и класса метеостанции, требований и особенностей объектов, находящихся побли­зости от обслуживающих станций, метеорологические сроки наблюдений за скоростью ветра устанавливаются различные. Чаще всего приняты интервалы в 3, 4 или 6 ч с измерениями в определенное время, но на части метеостанций и специальных объектов ведут непрерывную запись ско­ростей (например, на Московской и других телебашнях, при некоторых аэропортах, в зонах с аномальным ветровым режимом и т.д.) или прово­дят ежечасные наблюдения.

Класс открытости метеостанции, степень защищенности (затененности препятствиями) анемометра учитывают при измерениях скорости ветра различных направлений (по румбам). Для классификации станций поль­зуются специальной методикой, предложенной В.Ю. Милевским, которая изложена в литературе по метеорологии. Методика обеспечивает возмож­ность лучшей сопоставимости наблюдений, их репрезентативности для обслуживаемой зоны. На метеостанциях получают и накапливают доста­точно точные для практики сведения о среднепериодных скоростях, ко­торые в сравнении с данными, вычисленными по среднечасовым скорос­тям, дают относительно небольшую погрешность. Надо иметь в виду, что на показания анемометров влияют их расположение, макро- и микро­рельеф местности, класс открытости метеостанции. Это следует учиты­вать при пересчете скоростей для определенной высоты и для каждого конкретного района, где предполагается установка ветроагрегата, даже если он расположен сравнительно недалеко от станции.

Средние скорости ветра меняются в различное время суток, разные ме­сяцы и сезоны. Поэтому рассматривают суточный, месячный и сезонный ход скоростей, определяющий общую тенденцию их изменения в ука­занные периоды и оценивающий макроструктуру воздушного потока. Предельные значения скоростей ветра, данные об его интенсивности и микроструктура потока в различных точках его поперечного сечения и продольного вектора за относительно короткие интервалы времени яв­ляются важными режимными характеристиками ветра, используемыми в расчетах на прочность и долговечность агрегатов, при проектировании механизмов привода, систем регулирования и ориентации, схем совмест­ного использования с другими установками и др.

Важной характеристикой является вертикальный профиль ветра, т.е. изменения его скорости по высоте в приземном слое. Влияние зем­ной поверхности на скорость и направление ветра уменьшается по мере увеличения высоты. Поэтому скорость обычно возрастает, а порывис­тость и ускорения потока снижаются. Градиент скоростей летом, как правило, меньше, чем зимой, когда вертикальный перепад температур относительно небольшой. При адиабатическом градиенте температуры в нижних слоях атмосферы вертикальный профиль ветра v (К) аппроксими­руется зависимостями вида

Важнейшее значение для надежности и долговечности ветроэнергети­ческой установки имеют значения предельных скоростей ветра в зоне. \ Они определяют принимаемые расчетные нормативы при проектировании узлов и конструкций установки на прочность, параметры регуляторов, аэродинамические характеристики лопастей. При определении расчетных значений максимальных скоростей ветра различной вероятности, поль­зуются формулой Л.С. Гандина и Л.Е. Анапольской

где F(x) — вероятность того, что v превзойдет заданное значение х; (1, у - параметры уравнения, зависящие от характеристик зоны и режи­мов ветра; е — основание натурального логарифма.

Для оценки относительной скорости ветра в метеорологической прак­тике используют коэффициент, %,

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.