Меню
Поиск



рефераты скачать Расчет планетарной коробки переключения передач трактора класса 0,2

Тогда число зубьев эпицикла

а число зубьев сателлита

При этом уточненное значение характеристики планетарного ряда

Для планетарного ряда 18  к18=2.17. Так как , то по выражению [1,2.31], принимая γ=42, определим число зубьев солнечной шестерни

Тогда число зубьев эпицикла

а число зубьев сателлита

При этом уточненное значение характеристики планетарного ряда

Поскольку при подборе чисел зубьев шестерен планетарных рядов характеристики рядов 7, 11 и 18 изменились незначительно, то следует уточнить значение передаточного числа ПКП для наиболее часто используемой передачи, исключая прямую. В нашем случае мы приняли, что наиболее часто используемой в эксплуатации будет вторая передача.

Тогда для нее, согласно выражению [1,2.28], уточненное значение кинематического передаточного числа

которое отличается от исходного значения u2 = 2 всего на 0,4%.

Примечание: при подборе чисел зубьев шестерен планетарных рядов коробки передач допускается корректировка передаточных чисел до 3%.

В нашем случае передаточное число на наиболее часто используемой передаче изменилось всего на 0,4%, что допустимо. Следовательно, числа зубьев шестерен планетарных рядов подобраны верно.

4. Кинематический анализ планетарной коробки передач

Задачей кинематического анализа является уточнение передаточных чисел ПКП (если при подборе чисел зубьев шестерен планетарных рядов изменялись их характеристики к ) и аналитическое определение абсолютных частот вращения всех центральных звеньев и относительных частот вращения сателлитов на всех передачах.

Кинематический анализ ПКП основан на использовании уравне­ний кинематики ТДМ.

Рассмотрим схему ПКП (рис. 3) и проанализируем ее работу на всех передачах.

Для этого запишем уравнения кинематики для всех ТДМ, вхо­дящих в схему ПКП, в порядке их расположения на схеме:

Первая передача. Она обеспечивается включением тормоза Т1. Здесь под нагрузкой работают планетарные ряды 7, 11 и 14.

Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:

При включении тормоза Т1 на данной передаче  (см. рис. 3) nв7= nв11=0; nа7=nвщ; nа11= nа14=nвм.

Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:

Из схемы ПКП следует, что:

 

Из уравнения кинематики для планетарного ряда 7, 14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11, 14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим

Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:

Для оценки возможности использования заданной схемы ПКП необходимо оценить абсолютные частоты вращения всех ее звеньев. Поэтому в табл. 5 заносим результаты выполненных расчетов по абсолютной величине (без учета знаков).

Вторая передача. Обеспечивается включением тормоза Т2 и здесь под нагрузкой работают планетарные ряды 7, 11 и 14.

Передаточное число было определено ранее и его величина

Частоты вращения центральных звеньев ПКП  и относительных частот вращения сателлитов на второй передаче определяем аналогично.

Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:

При включении тормоза Т2 на данной передаче  (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18=0.

Из схемы ПКП следует, что:

 

Из уравнения кинематики для планетарного ряда 7, 14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11 и 7 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим

Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:

Третья передача. Она обеспечивается включением тормоза Т3. Здесь под нагрузкой работают планетарные ряды 7, 11 и 14.

Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:

При включении тормоза Т3 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18=0; nв14= nс11= nс18.

Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:

Из схемы ПКП следует, что

 

Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11 и 7 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим

Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:

Четвертая передача. Она обеспечивается включением тормоза Т4. Здесь под нагрузкой работают планетарные ряды 7, 11, 14 и 18.

При включении тормоза Т4 на данной передаче  (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18; nа18=0.

Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:

Из схемы ПКП следует, что

 

Из уравнения кинематики для планетарного ряда 7,14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11 с учетом уравнений связи определим

Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:

Частоты вращения всех центральных звеньев ПКП  и

относительные частоты вращения сателлитов, об/мин

Таблица 5


Передача

1

2

3

4

Нагруженные ряды ПКП

7, 11, 14

7, 11, 14

7, 11, 14

7, 11, 14, 18

nа7=nвщ

2000

2000

2000

2000

nа11= nа14=nвм

758

962

1258

1563

nв7= nв11

0

328

667

1163

nс14= nс6= nв18

1000

641

0

744

nв14= nс11= nс18

393

0

503

1072

nа18

2378

2096

1142

0

nВ07

4000

3344

2667

1674

nВ011

1630

1363

1270

860

nВ014

4604

3848

3020

1964

nВ018

2170

2291

1798

1172


Из анализа частот вращения всех звеньев ПКП видно, что при работе под нагрузкой они не превосходят допустимых пределов.

Таким образом, полученная в результате синтеза схема ПКП обеспечивает работу всех подшипников в области допустимых для них частот вращения.

5. Силовой анализ планетарной коробки передач


Силовой анализ ПКП производится с целью определения максимальных крутящих моментов, нагружающих фрикционные элементы и шестерни планетарных рядов, что необходимо для их последующего расчета.

Крутящие моменты, действующие на звенья планетарного ряда. В ТДМ со смешанным зацеплением шестерен [1, рис. 2.1] абсолютные величины моментов Ма на солнечной шестерне, Мв на водиле и Мс на эпицикле связаны соотношениями:

Мв=Ма(1+к);     (2.34)

Мс = Мак;          (2.35)

  (2.36)

Отметим основные свойства этих соотношений:

1) они справедливы для любого режима работы ТДМ (блокировка, вращение двух звеньев при заторможенном третьем звене, вращение всех звеньев под нагрузкой);

2) если момент одного из звеньев равен нулю, то два других тоже равны нулю и весь ТДМ не нагружен (это свойство используется при определении нагруженных рядов ПКП);

3) зная момент, подведенный к одному звену, можно определить два других момента;

4) совпадающие по направлению моменты солнечной шестерни и эпицикла направлены против момента водила и весь ТДМ уравновешен.

Определение тормозных моментов. Тормозные моменты по отношению к ПКП являются внешними. Кроме тормозного момента при включении передачи с передаточным числом ир≠1 на ПКП действуют еще два внешних момента: на ее ведущем Мвщ и ведомом Мвм валах (рис. 4).

Рис. 4. Схема внешних моментов, действующих на ПКП с двумя степенями свободы

Запишем условие равновесия системы:

где МТр - момент трения тормоза на р передаче.

Принимая

Мвм=Мвщ uр ηр ,

получим

Пренебрегая потерями в ПКП (ошибка не превышает 3%), окончательно получим

  (2.43)

Выражение [1,2.43]  позволяет определить расчетный момент тормоза на любой передаче в ПКП с учетом знака передаточного числа uр.

Определим расчетные моменты на солнечных шестернях всех планетарных рядов выбранной нами ранее схемы ПКП (см. рис. 3), ее тормозов и блокировочного фрикциона. Здесь необходимо рассмотреть работу ПКП на всех передачах.

Первая передача. Под нагрузкой работает планетарные ряды 7, 11 и 14.

Расчетный момент тормоза первой передачи определим по выражению [1,2.43] и уравнениям кинематики и связи для этих рядов.

Тогда

Момент на солнечной шестерне планетарного ряда 7, 11 и 14

(см. рис. 3)

Вторая передача. Под нагрузкой работает планетарные ряды 7, 11 и 14.

Расчетный момент тормоза второй передачи определим по вы­ражению [1,2.43] и уравнениям кинематики и связи для этих рядов.

Тогда

Момент на солнечной шестерне планетарного ряда 7, 11 и 14

(см. рис. 3)

Третья передача. Под нагрузкой работает планетарные ряды 7, 11 и 14.

Расчетный момент тормоза третьей передачи определим по вы­ражению [1,2.43] и уравнениям кинематики и связи для этих рядов.

Тогда

Момент на солнечной шестерне планетарного ряда 7, 11 и 14

(см. рис. 3)

Четвертая передача. Под нагрузкой работает планетарные ряды 7, 11, 14 и 18.

Расчетный момент тормоза четвертой передачи определим по выражению [1,2.43] и уравнениям кинематики и связи для этих рядов.

Тогда

Момент на солнечной шестерне планетарного ряда 7, 11, 14  и 18

(см. рис. 3)

Пятая передача. Включен блокировочный фрикцион Ф и под нагрузкой работают планетарные ряды 7, 11 и 14

Результаты выполненных расчетов занесены в таблицу 6.

Нагрузки на элементы ПКП

Таблица 6


Передача

Расчетный момент в долях от Мвщ

МТ1

МТ2

МТ3

МТ4

Ф

Ма7

Ма11

Ма14

Ма18

1

1,64

0

0

0

0

1

1,09

1,09

0

2

0

1,08

0

0

0

1

0,43

0,43

0

3

0

0

0,67

0

0

1

0,27

0,27

0

4

0

0

0

0,28

0

1

0,34

0,34

0,28

5

0

0

0

0

3

1

1,3

1,3

0


Расчеты планетарных рядов коробки передач необходимо выполнять по максимальным нагружающим моментам, величины которых представлены в табл. 6.

Библиографический список

1.     Шарипов В. М., Крумбольт Л. Н., Маринкин А. П. Планетарные коробки передач колесных и гусеничных машин./Под общ. ред. В. М. Шарипова.-М.: МГТУ «МАМИ», 2000.-142 с.

2.      Проектирование полноприводных колесных машин: В 2 т.  Т. 1. Учеб. Для вузов / Б.А. Афанасьев, Н.Ф. Бочаров, Л.Ф. Жеглов; Под ред. А.А. Полунгяна. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. – 488 с.

3.      Справочник НИИАТ: 12 – е изд. переработанное. и доп. – М.: Транспорт, 1984. – 546 с.

4.      Баженов С.П. Методические указания к курсовой работе по теории автомобиля и трактора для очной и очно-заочной формы обучения специальности «Автомобиле- и тракторостроение»/ С.П. Баженов.– Липецк: ЛГТУ, 2001. – 35 с.

5.      Конструирование узлов и деталей машин: Учеб. пособие для техн. спец. вузов/ П.Ф. Дунаев, О.П. Леликов. – М.: Высш. шк., 2000. – 447 с.


Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.