Меню
Поиск



рефераты скачать Расчет планетарной коробки переключения передач трактора класса 0,2


Число передач коробки передач принимаем равным пяти, а чтобы улучшить перекрытие между ступенями, совмещается точка Ркр.рас с точкой гидротрансформатора, имеющей ηг мах, а точка перехода на высшую передачу – в момент перехода на режим гидромуфты.

Передаточное число трансмиссии на I передаче ίТР(1).

где f- коэффициент сопротивления качению на наиболее вероятном почвенном фоне, встречающемся при эксплуатации трактора, в нашем случае для поля подготовленного под посев f=0,02; Мт – момент совместной работы двигателя и гидротрансформатора в режиме ηг max.;  rk- динамический радиус колеса, м;  - механический КПД трансмиссии, который включает внутренние потери в ходовой системе: для сельскохозяйственных колесных тракторов , принимаем ; КПД гидротрансформатора  = 0,87 .

Для колесного трактора класса 0,2 .

Принимая U5 = 1, находим передаточные числа на остальных передачах планетарной коробки передач: U1 = 2,52; U2 = 2; U3 = 1,6; U4 = 1,26.

2. Синтез схем планетарных коробок передач

2.1. Построение обобщенного кинематического плана планетарной коробки передач


Синтез схем ПКП выполняется в следующей последовательности.

В курсовой работе рассматривается  пятиступенчатая ПКП с двумя степенями свободы, обеспечивающая пять передач переднего хода.

Используя уравнение кинематики ТДМ [1, 2.8], построим обобщенный кинематический план ПКП (ОКП ПКП). Он представляет собой графическую зависимость частот вращения центральных звеньев np, ПКП от частоты вращения ведомого вала nвм при постоянной частоте вращения ведущего вала пещ, принятой за единицу:

np=f(nвм) при nвщ=1 .

Подставив в уравнение [1, 2.8] nвщ=1, получим

 [1,2.9]

Из полученного выражения видно, что зависимость nр = f(nвм) имеет линейный характер и на ОКП ПКП представляется прямой линией. Построить эту зависимость можно по двум точкам.

Первую точку определим для режима блокировки всех звеньев ПКП, при котором

Для ПКП планы скоростей всех тормозных звеньев должны пройти через точку с координатами (1; 1).

Вторую точку на ОКП ПКП найдем при включенной р передаче, когда в уравнении [1,2.9] np = 0. В результате частота вращения ведомого вала

Эта точка на плане имеет координаты  .

Таким образом график зависимости np=f(nвм) на ОКП ПКП представляет собой прямую, проходящую через точки с координатами (1; 1), . Первая точка (1; 1) физически означает, что механизм сблокирован и частоты вращения всех центральных звеньев ПКП равны частоте вращения ведущего вала, принятой за единицу (). Вторая точка определяется для случая остановки тормозного звена np = 0.

Она определяет частоту вращения ведомого вала ПКП при включенной р передаче ().

Частота вращения ведущего вала () на ОКП ПКП пред­ставляется прямой, проходящей через точку (1; 1) параллельно оси абсцисс.

При разбивке передаточных чисел между агрегатами трансмиссии, с целью упрощения конструкции ПКП, предусматриваем в ней прямую передачу с передаточным числом uр = 1. Это уменьшает на единицу число ТДМ, входящих в схему ПКП. Необходимо, чтобы прямой была наиболее часто используемая передача, так как КПД такой передаче близок к единице.

ОКП для передаточных чисел проектируемой ПКП представлены на рис. 1. Этот план является общим для любых схем ПКП, реализующих заданные передаточные числа. Он позволяет определить абсолютные и относительные частоты вращения центральных звеньев ПКП на нейтрали и на всех передачах. Частота вращения ведомого вала nвм выражается отрезками оси абсцисс или ординатами штрихпунктирного луча, проведенного через начало координат и единичную точку. Частоты вращения тормозных звеньев nр на включаемых передачах и нейтрали определяются ординатами их лучей.

Относительные частоты вращения центральных звеньев определяются вертикальными отрезками между их лучами.

Относительная частота вращения максимальна на первой передаче между ведущим звеном nвщ  и     n4.

Рис. 1. ОКП ПКП для заданных  передаточных чисел


Высокие относительные частоты вращения центральных звеньев могут привести к недопустимо большим частотам вращения подшипников сателлитов. Здесь необходимо отметить, что предельная быстроходность подшипников качения ограничивается в каталоге предельной частотой вращения колец. Под предельной быстроходностью подшипника понимается наибольшая частота вращения колец, за пределами которой расчетная долговечность подшипника не гарантируется.

Кроме основных кинематических параметров ОКП ПКП позволяет определить моменты блокировочных фрикционов при различных вариантах блокировки звеньев для получения прямой передачи.


2.2. Составление исходных уравнений и приведение исходных уравнений к простейшему виду


Для этого используется уравнение [1, 2.8]. В результате получим четыре исходных уравнения:

В приведенных уравнениях [1, 2.4-2.6] наименьший коэффициент равен плюс единице и коэффициенты при частотах вращения центральных звеньев располагаются в порядке возрастания по абсолютной величи­не.

Уравнения 1и 2 по своей структуре полностью соответствуют урав­нениям [1, 2.4-2.6]. Поэтому перепишем их без изменения.

В уравнении 3 и 4  коэффициенты при частотах вращения n2, n3, n4  меньше единицы. Для приведения данных уравнений к простейшему виду разделим их соответственно на 0,6 и 0,26 и перепишем в порядке возрастания по абсолютной величине коэффициентов при частотах вращения центральных звеньев. В результате получим

.


2.3. Составление производных уравнений


Производные уравнения отличаются от исходных и друг от друга комбинацией входящих в уравнения частот вращения центральных звеньев.

Общее число исходных и производных уравнений W определяется числом возможных сочетаний из общего числа частот вращения тормозных звеньев р , ведущего и ведомого звеньев (всего р + 2 звена) по три, так как в каждое уравнение входят частоты вращения трех центральных звеньев ТДМ.

В общем виде

В рассматриваемом примере р = 4 . Тогда

Следовательно, к четырем исходным уравнениям надо добавить 16 производных.

Первая группа производных уравнений получается исключением из исходных уравнений частоты вращения ведомого звена nвм. Для этого рассматриваются попарно два уравнения. При этом из четырех уравнений

Следовательно, из четырех исходных уравнений исключением из них частоты вращения ведомого звена можно получить следующее число комбинаций по два уравнения nвм можно получить 6 производных уравнений.

Для исключения из уравнений 1 и 2 nвм умножаем уравнение 2 на (-2,52/2) и суммируем его с уравнением 1. В результате получим уравнение

Остальные пять производных уравнений получены аналогично:

     (из уравнений 1 и 3);

                (из уравнений 1 и 4);

              (из уравнений 2 и 3);

               (из уравнений 2 и 4);

               (из уравнений 3 и 4).

После приведения полученных уравнений к простейшему виду получим:

Вторая группа производных уравнений получается исключением из исходных уравнений 1-4 частоты вращения ведущего звена nвщ.

Здесь, как и в ранее рассмотренном случае, из четырех исходных уравнений исключением из них частоты вращения ведущего звена nвщ можно получить 6 производных уравнений:

      (из уравнений 1 и 2);

         (из уравнений 1 и 3);

         (из уравнений 1 и 4);

         (из уравнений 2 и 3);

         (из уравнений 2 и 4);

    (из уравнений 3 и 4).

После приведения полученных уравнений к простейшему виду получим:

Остальные недостающие четыре уравнения определим из уравнений 5-10 исключением из них частоты вращения ведущего звена nвщ или из уравнений 11-16 исключением из них частоты вращения ведомого звена nвм. В результате получим:

      (из уравнений 11 и 12);

        (из уравнений 12 и 16);

         (из уравнений 14 и 15);

    (из уравнений 11 и 15).

После приведения полученных уравнений к простейшему виду имеем:


2.4. Проверка составленных уравнений


Уравнения проверяются по следующим параметрам. Наименьший коэффициент при частоте вращения центрального звена в каждом уравнении должен быть равен единице. Наибольший по абсолютной величине коэффициент должен быть на единицу больше среднего. Комбинация частот вращения центральных звеньев, входящих в каждое уравнение, не должна повторяться.

В данном случае все уравнения 1-20 отвечают выше перечисленным требованиям.

Все полученные уравнения переносятся в табл. 1, в которой предусматривают колонки 3, 4, 5 и 6 для записи характеристик ТДМ, относительных максимальных частот вращения сателлитов, структурных схем ТДМ и общей оценки механизма.


2.5. Отбраковка ТДМ


Отбраковка ТДМ по величине характеристики планетарного ряда к. Для схем ТДМ со смешанным зацеплением шестерен характеристика планетарного ряда может изменяться в пределах 1,5 < к < 4,0 (4,5).

Для синтеза схем  ПКП будем использовать толь­ко ТДМ со смешанным зацеплением шестерен,  для которых 1,5 < к < 4,0.

Тогда по величине характеристики планетарного ряда к в табл. 3 отбраковываем уравнения 1, 2, 3, 5, 8, 9, 10, 13, 15, 16, 17 и 20 (см. графу 3 и 6 таблицы).

Отбраковка ТДМ по величине относительных частот вращения сателлитов пВо. Здесь рассматриваются только механизмы, у которых характеристика планетарного ряда к находится в приемлемых пределах.

Для схемы ТДМ со смешанным зацеплением шестерен относительные частоты вращения сателлитов определяются, как и в простой передаче при неподвижном водиле.

Таблица 3

Анализ схем ТДМ на возможность дальнейшего использования


Уравнение кинематики ТДМ


К

Струк­турная схема

Примечание

1

2

3

4

5

6

1

1,12



Исключить по К

2

1



Исключить по К

3

1,33



Исключить по К

4

3,85

4,2


Годное

5

4,85



Исключить по К

6

1,63

3,15


Годное

7

1,92

1,64


Годное

8

4,02



Исключить по К

9

1,37



Исключить по К

10

1,22



Исключить по К

11

1,9

1,37


Годное

 

12

1,54

2,25


Годное

 

13

4,76



Исключить по К

 

14

1,5

2,4


Годное

 

15

2,86

1,86


Годное

 

 16

1,33



Исключить по К

 

17

1,26



Исключить по К

 

18

2,17

1,57


Годное

 

19

3,29

0,9


Годное

 

20

8,34



Исключить по К

 


Относительные частоты вращения сателлитов nВо определяем по одному из выражений [1, 2.11-2.13]. При этом nВо определяем для той передачи, на которой они максимальные, а максимальные они там, где относительные частоты центральных звеньев наибольшие. В нашем случае, в соответствии с ОКП ПКП (см рис. 1), наибольшие относительные частоты вращения центральных звеньев на первой передаче.

Абсолютные частоты вращения центральных звеньев ПКП для данной передачи определим из ОКП ПКП (рис. 1).

Здесь:

;     ;

;

;

;

Для четвертого ТДМ из табл. 3 для определения nВо используем выражение [1, 2.11]. Здесь ; ; .

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.