Меню
Поиск



рефераты скачать Гидроочистка дизельных топлив


При повышенных температурах константа равновесия полного гидрирования резко уменьшается с увеличением числа конденсированных колец в молекуле. Увеличение давления в большей степени повышает глубину полного гидрирования, однако при повышенных температурах при температурах 600 – 700 К константы гидрирования настолько малы, что даже при очень высоких давлениях возможная глубина гидрирования мала. Термодинамически значительно более выгодно ступенчатое гидрирование полициклических углеводородов с гидрогенолизом гидрированных колец и деалкилированием.

Суммарный тепловой эффект гидроочистки составляет 20 – 87 кДж на 1 кг сырья для прямогонных фракций. Добавление к прямогонному сырью до 30% фракций вторичного происхождения повышает теплоту реакции до 125–187 кДж/кг в зависимости от содержания непредельных углеводородов в сырье [4].

 

Химизм процесса гидроочистки

Превращение серосодержащих соединений

В неуглеводороных соединениях связи C–S и S–S менее прочны, чем связи С–С и С–Н, усредненные энергии связи которых равны 201, 218, 247 и 365 кДж/моль соответственно. Но поскольку процесс гидроочистки каталитический, то прочность связи следует оценивать с учетом энергии образования промежуточных комплексов катализатора с осколками, образовавшимися после разрыва связей. Эта энергия значительно компенсирует затрату энергии разрыва связи. Например, на никеле энергия разрыва связи  C–S составляет 20 кДж/моль, С–N – 104 кДж/моль, а С–С – 201кДж/моль. Этим объясняется селективность процессов гидроочистки: почти количественная деструкция связей С–S без существенного затрагивания связей С–С, т.е. без заметной деструкции сырья.

Меркаптаны превращаются в углеводород и сероводород:


RSH + H2              RH + H2S

Сульфиды гидрируются через стадию образования меркаптанов:

H2

 

H2

 
 


RH

 
RSR’              R’SH             R’H + H2S


Дисульфиды гидрируются до сероводорода и соответствующих углеводородов также через стадию образования меркаптанов:

H2

 

H2

 
 


RSSR’              RSH + R’SH             RH + R’H + 2H2S


В циклических сульфидах, например тиофане, вначале разрывается кольцо, затем отщепляется сероводород и образуется соответствующий углеводород:

2H2

 
 

S

 
                CH3CH2CH2CH3 +H2S


Соединения тиофенового ряда представлены бензтиофеном, дибензтиофеном, алкилбибезтиофенами и диалкилдибензтиофенами – малоактивны. Их доля в составе серусодержащих соединений дизельных фракций достигает 50 – 60 %, что в пересчете на серу при общем ее содержании около 1,2 %(масс.) составляет 0,3 – 0,7 %(масс.). Устойчивость сераорганических соединений к гидрогенолизу с увеличением числа ароматических и нафтеновых колец в его молекуле возрастает.

Тиофен и бензтиофен сначала гидрируются до производных тетрагидротиофена, которые затем превращаются алканы и алкилпоизводные ароматических углеводородов:

H2

 

H2

 
 


S

 

S

 
CH3CH2CH(R)CH3 + H2S


 


                                                                                                           + H2S

Гидрогенолиз дибензтиофена происходит по схеме:


По реакции (1) гидрогенолиз дибензтиофена происходит преимущественно на алюмокобальтмолибденовом, а по реакции (2) и (3) – на алюмоникельмолибденовом катализаторе.


Превращение азотсодержащих соединений

Азот в нефтепродуктах находится в основном в гетероциклах – в виде производных пиррола и пиридина.

Гидрогенолиз связи C – N протекает труднее, чем связи C – S, поэтому в процессах гидроочистки азот удалить сложнее, чем серу. Легче всего гидрируются амины:

H2

 
 


C6H5CH2NH2                 C6H5CH3 + NH3


Анилин, содержащий аминогруппу, связанную с ароматическим кольцом, гидрируется значительно труднее:

H2

 
 


C6H5NH2                 C6H6 + NH3


Хуже всего удаляется азот из циклических структур. Пиррол гидрируется до бутана и аммиака:

2H2

 

H2

 
 


H2

 
CH3CH2CH2CH2NH2            CH3CH2CH2CH3 + NH3

NH

 
 


Пиридин превращается в пентан и аммиак по схеме:


H2

 

H2

 
 


N

 
                                    CH3CH2CH2CH2CH2NH2          CH3CH2CH2CH2CH3 + NH3


Так как сопряжённая электронная система в молекуле пиридина значительно более устойчива, чем в молекуле пиррола, пиридин гидрируется труднее, чем пиррол.

Гидрирование бициклических и полициклических ароматических углеводородов начинается с кольца, содержащего гетероатом:


 


H2

 

N

 

2H2

 
                         + NH3


Превращение кислородсодержащих и металлоорганических соединений

Кислород в средних дистиллятах может быть представлен соединениями типа спиртов, эфиров, фенолов и нафтеновых кислот. В высококипящих фракциях кислород находится в основном в мостиковых связях и в циклах молекул. Наибольшее количество кислородсодержащих соединений концентрируется в смолах и асфальтенах.

При гидрогенолизе кислородсодержащих соединений образуются соответствующие углеводороды и вода:

2H2

 
 


R             COOH                 R             CH3 + 2H2O

2H2

 
 


RC6H4OH                RC6H5 + H2O


Смолы и асфальтены превращаются в низкомолекулярные соединения.

Гидроочистка от кислородсодержащих соединений протекает в тех же условиях, что и удаление сернистых примесей. В присутствии обычных катализаторов гидроочистки достигается практически полное гидрирование кислородсодержащих соединений.

Металлорганические соединения, присутствующие в нефтяных фракциях, разлагаются на активных центрах катализатора с выделением свободного металла, являющегося каталитическим ядом. Гидроочистка позволяет удалять большую часть металлорганических соединений. Так, ванадий удаляется на 98÷100%, а никель – 93÷96%.


Превращение углеводородов


В процессе гидроочистки одновременно с реакциями сернистых, азотистых и кислородных соединений протекают многочисленные реакции углеводородов:

·                    изомеризация парафиновых и нафтеновых углеводородов;

·                    насыщение непредельных углеводородов;

·                    гидрокрекинг;

·                    гидрирование ароматических углеводородов и другие.

Изомеризация парафиновых и нафтеновых углеводородов происходит при любых условиях обессеривания.

При температуре 350÷500˚С происходит практически полное гидрирование непредельных соединений при сравнительно низком  парциальном давлении водорода:

H2

 
 


RCH = CH2                  RCH2CH3


Интенсивность гидрокрекинга усиливается с повышением температуры и давления. При более высоких температурах и низких давлениях происходит частичное дегидрирование нафтеновых и дегидроциклизация парафиновых углеводородов. В некоторых случаях гидрогенизационного обессеривания эти реакции могут служить источником получения водорода для реакции собственного обессеривания, т.е. обеспечивают протекание процесса автогидроочистки.

В процессе гидрирования наиболее стойкими являются ароматические углеводороды. Гидрирование ароматических углеводородов с конденсированными кольцами может происходить в условиях процесса гидроочистки:


H2

 

H2

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.