Меню
Поиск



рефераты скачать Эффективность координированного управления

const 4 - 1x1 + 1x4 + ly3 > 4

const 5 - 1x3 + 1x5 + ly5 > 3

const 6 - 1x2 + 1x6 + ly4 > 4

const 7 - 1x5 + 1x6 + ly9 > 2

const 8 - 1x3 + 1x7 + ly7 > 3

const 9 - 1x4 + 1x7 + ly8 > 4

const 10 - 1x3 + 1x8 + ly6 > 4

const 11 - 1x5 + 1x8 + lylO > 3

const 12 - 1x7 + 1x8 + lyll > 4

const 13 - 1x8 + 1x9 + lyl3 > 3

const 14 - 1x7 + 1x10 + lyl2 > 5

const 15 - 1x9 + 1x10 + lyl4 > 3

const 16 - 1x10 + 1x11 + lyl5 > 2

const 17 + 1x11 < 16

const 18 + lyl < 1

const 19 + ly2 < 0

const 20 + ly3 < 0

const 21 + ly4 < 1

const 22 + ly5 < 1

const 23 + ly6 < 1

const 24 + ly7 < 1

const 25 + ly8 < 1

const 26 + ly9 < 0

const 27 + lylO < 1

const 28 + lyll < 1

const 29 + lyl2 < 2

const 30 + lyl3 < 1

const 31 + lyl4 < 1

const 32 + lyl5 < 0

Приложение 5.1.


Data file: var. 22                 Linear Programming                    Solution

Number of constraints (2-99) 32                Number of variables (2-99)  26

minimize

Solution value =11.2


Multiple Optimal Solutions Exist



Optimal

Reduced

Original

Lower

Upper



Value

Cost

Coeficnt

Limit

Limit

xl

0.00

0.00

0.00

0.00

0.00

x2

5.00

0.00

0.00

0.00

0.00

x3

4.00

0.00

0.00

0.00

0.00

x4

4.00

0.00

0.00

-3.70

Infinity

x5

7.00

0,00

0.00

0.00

0.00

x6

9.00

0.00

0.00

0.00

0.00

x7

7.00

0.00

0.00

—Infinity

0.50

x8

10.00

0.00

0.00

—Infinity

.9000001

x9

12.00

0.00

0.00

---Infinity

2.20

xlO

14.00

0.00

0.00

—Infinity

3.70

xll

16.00

0.00

0.00

—Infinity

3.70

y12

0.00

2.60

2.60

0.00

Infinity

y2

0.00

0.00

0.00

0.00

0.00

y3

0.00

0.00

0.00

—Infinity

3.70

y4

0.00

2.30

2.30

0.00

Infinity

y5

0.00

3.20

3.20

0.00

Infinity

y6

0.00

3.00

3.00

0.00

Infinity

y7

0.00

0.60

0.60

0.00

Infinity

y8

1.00

0.00

3.70

3.20

Infinity

y9

0.00

0.00

0.00

0.00

0.00

ylO

0.00

2.40

2.40

0.00

Infinity

yll

1.00

0.00

3.20

—Infinity

3.70

yl2

0.00

1.80

1.80

0.00

Infinity

yi3

1.00

0.00

2.80

—Infinity

3.70

yl4

1.00

0,00

1.50

—Infinity

3,70

yl5

0.00

0.00

0.00

—Infinity

3,70



Приложение 6.


Data file:var.22                Linear Programming                   Data Screen

Number of constraints (2-99) 18                Number of variables (2-99)  35

maximize

maximize + 1I

const 1: + lal =2.1

const 2: + 1bl =2.1

const 3: + 1cl =2.3

const 4: - 1.06al + la2 + 1dl =2.2

const 5: - 1.06bl + lb2 + le1 =1.9

const 6: – 1.06cl + lc2 - 1.015el + le2 = .1

const 7: + 1.06a2 - la3 + 1.06dl - ld2 =1.1

const 8: + 1.015a3 - la4 + 1.06b2 - lb3 = 1.6

const 9: + 1.015b3 - lb4 + 1.06c2 - lc3 + 1.06e2 - le3 = 1

const 10: + 1.015b4 - lb5 + 1.06d2 - ld3 = .2

const 11: + 1.06a4 - la5 + 1.015b5 - lb6 + 1.035c3 - lc4 = 1.4

const 12: + 1.015c4 - lc5 + 1.035d3 - ld4 + 1.06e3 - le4 =2.4

const 13: + 1.06a5 - la6 + 1.06b6 - lb7 + 1.035d4 - ld5 = 1

const 14: + 1.06c5 - lc6 + 1.06e4 - le5 = 1

const 15: + 1.015e5 - le6 = 1

const 16: + 1.06a6 - la7 + 1.06b7 - lb8 + 1.06d5 - ld6 = 0

const 17: + 1.06c6 - lc7 = 0

const 18: + 1.035a7 + 1.035b8 + 1.015c7 + 1.035d6 + 1.06e6 – 1I = 0



Приложение 7.


Data file: var.22               Linear Programming                    Solution

Number of constraints (2-99) 20            Number of variables (2-99)  40 maximize

Solution value

= 2.430179

Multiple Optimal Solutions

Exist



Optimal

Reduced

Original

Lower

Upper



Value

Cost

Coeficnt

Limit

Limit

a1

2.10

0.00

0.00

0.00

0.00

a2

4.426

0.00

0.00

0.00

0.00

a3

1.749202

0.00

0.00

0.00

0.00

a4

0.00

0.00

0.00

0.00

0.00

a5

0.00

0.00

0.00

0.00

0.00

a6

0.00

0.00

0.00

0.00

0.00

a7

2,292622

0.00

0.00

0.00

0,00

b1

2.10

0.00

0.00

0.00

0.00

b2

2.75543

0,00

0.00

0.00

0.00

b3

1.320755

0.00

0.00

0.00

0.00

b4

0.00

0.00

0.00

0.00

0,00

b5

0.00

0.00

0.00

0.00

0.00

b6

0.00

0.00

0.00

0.00

0,00

b7

0.00

0.00

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.