Меню
Поиск



рефераты скачать Выбор схемы развития районной электрической сети

Взрывоопасные зоны — помещения или часть его или вне помещения, где образуются взрывоопасные смеси как при нормальном протекании технологического процесса, так и в аварийных ситуациях.

Здание распределительного пункта (РП) должно быть I или II степени огнестойкости. Степень огнестойкости зданий и сооружений определяется группой  возгораемости  и  пределом  огнестойкости  их  основных строительных конструкций (несущие стены, перекрытия и т.д.). Конкретные данные приведены в табл. 9.6.

Предел огнестойкости строительной конструкции определяется временем в часах от начала испытания конструкции на огнестойкость до возникновения одного из следующих признаков:

а) образование в конструкции сквозных трещин или сквозных отверстий, через которые проникают продукты горения или пламя;

б) повышение температуры на не обогреваемой поверхности конструкции в среднем более чем на 140 °С или в любой точке этой поверхности более чем на 180 °С в сравнении с температурой конструкции до испытания или более 220 °С независимо от температуры конструкции до испытания;

в) потеря конструкцией несущей способности (обрушение).





Таблица 9.5

Группа возгораемости и минимальные пределы огнестойкости основных строительных конструкций, ч

Основные строительные конструкции

Степень огнестойкости зданий или сооружений

I

II

Несущие стены, стены лестничных клеток, колонны

Несгораемые

2,5

Несгораемые 2,0

Наружные стены из навесных панелей и наружные фахверковые стены

Несгораемые 0,5

Несгораемые 0,25

Плиты, настилы и другие несущие конструкции междуэтажных и чердачных перекрытий

Несгораемые1,0

Несгораемые0,75

Плиты, настилы и другие несущие конструкции покрытий

Несгораемые0,5

Несгораемые0,25




Внутренние несущие стены (перегородки)

Несгораемые0,5

Несгораемые0,25

Противопожарные стены (брандмауэры)

Несгораемые2,5

Несгораемые2,5











9.5.         Оценка экологичности проекта.

Влияние подстанции на окружающую среду крайне разнообразно. Вредное действие магнитного поля на живые организмы, и в первую очередь на человека, проявляется только при очень высоких напряжённостях порядка 150-200 А/м, возникающих на расстояниях до 1-1,5 м от проводов фаз ВЛ, и представляет опасность при работе под напряжением .

Непосредственное (биологическое) влияние электромагнитного поля на человека связано с воздействием на сердечно-сосудистую, центральную и периферийную нервные системы, мышечную ткань и другие органы. При этом возможны изменения давления и пульса, сердцебиение, аритмия, повышенная нервная возбудимость и утомляемость. Вредные последствия пребывания человека зависят от напряжённости поля Е и от продолжительности его воздействия.

Для   эксплуатационного   персонала   подстанции   установлена допустимая продолжительность периодического и длительного пребывания в электрическом поле при напряжённостях на уровне головы человека (1,8 м над уровнем земли): 5 кВ/м - время пребывания неограниченно; 10 кВ/м -180 мин; 15 кВ/м - 90 мин; 20 кВ/м - 10 мин; 25 кВ/м - 5 мин. Выполнение этих условий обеспечивает самовосстановление организма в течении суток без остаточных реакций и функциональных или патологических изменений.






















9.6.         Оценка чрезвычайных ситуаций

Произведём оценку чрезвычайных ситуаций - их последствие, меры предотвращения и меры по ликвидации.

Обрыв линии и короткое замыкание на линиях. Данная ситуация может привести к снижению напряжения у потребителей, соответственно к снижению качества выпускаемой продукции. Для предотвращения данной ситуации необходимо особо ответственные потребители запитывать по двум одноцепным линиям и от двух независимых источников питания. Для восстановления  нормального  режима  работы  линии,  необходимо использовать системную автоматику: АВР и АПВ. При успешном АПВ  линия может вернуться в нормальный режим работы, в противном случае применяется АВР и вызывается служба линии для восстановления линии.

Пожар трансформатора приводит к перерыву электроснабжения потребителей на время АВР. При сгорании масла в атмосферу выделяются вредные токсичные  газы.  Данная  ситуация также  приводит к дополнительным затратам на восстановление трансформатора. Для предотвращения    пожара   применяется    автоматическая   система пожаротушения, вызывается пожарная команда.

Пожар окружающего лесного массива может привести к пожару на территории подстанции, при переносе огня.

Для   предотвращения   возникновения   пожара   необходима противопожарная полоса вокруг подстанции шириной 50 м. Для ликвидации последствий может привлекаться персонал ПС и пожарная служба.

Пример дерева причин и опасностей рассмотрим для наиболее опасного случая - пожара на подстанции:

















Пожар на

подстанции

 
 




 




Пожар в

трансформаторе

 

 

Местное

возгорание

 
 



 



Отказ

 выключателя

 

КЗ в

трансформаторе

 

Искрение

 

Нагрев

проводов

 
 



 



 



Рис. 9.1 Дерево причин и опасностей

Начальные условия возникновения ЧС:

1.     пригорели контакты отключающего реле. При этом контакты реле не

перекинулись, и сигнал на катушку отключения не пошел;

2.     не сработала катушка отключения выключателя;

3.     не сработал привод выключателя;

4.     старение изоляции в самом трансформаторе;

5.     не соблюдение правил ТБ при работе на действующем электрооборудовании;

6.     природный катаклизм (ураганный ветер, наводнение, землетрясение, удар молнии и т. д.);

7.      нарушение норм и правил проведения сварочных работ;

8.      провисание проводов и сильное загрязнение изоляторов;

9.     брак сборки и наладки панелей защиты, слабое крепление проводов в клеммнике,   а   также   невыполнение   требований   правил   ПТЭ электроустановок;

10. сломалась автоматика управления отопительными приборами;

11.       повышенный режим потребления электроэнергии потребителями;

12.       наличие легковоспламеняющихся предметов.



9.7.         Грозозащита и заземление подстанции.


Изоляция электроустановок должна работать надежно как при длительно приложенных напряжениях промышленной частоты, так и при возникающих в эксплуатации перенапряжениях грозового характера. Грозовые перенапряжения возникают при прямом ударе молнии в землю, а так же при ударе молнии в предметы или объекты находящиеся вблизи электрических установок. От грозовых перенапряжений все электрические установки должны иметь специальную защиту. Основные элементы защиты - разрядники. От прямых ударов молний электрические установки защищаются стержневыми или тросовыми молниеотводами. Защита осуществляется молниеотводами, установленными непосредственно на металлических   конструкциях   (порталах)   и   отдельно   стоящими молниеотводами.

В данной работе расчет грозозащиты сводится к определению местоположения молниеотводов, которые определяются таким образом, чтобы зона действия молниеотводов полностью защищала все электрооборудование подстанции.

h = 19,35 м. – высота молниеотвода

hх = 11,35 м. – высота защищаемого объекта.

hа = 8 м – высота молниеотвода над ошиновкой.

D = м.                                               (9.2)

D - максимальный диаметр окружности, защищающей наиболее высокую точку ОРУ.

Где, р = 1, при h< 30 м,     р =       при h> 30 м


Рис. 9.2. Схема грозозащиты

















9.8.         Расчёт заземляющих устройств.


Наибольший  ток через заземление при замыканиях на землю – 3613А на стороне 110кВ и 11187 на стороне 10кВ.

Грунт в месте сооружения подстанции – суглинок. Согласно ПУЭ, заземляющие устройства электроустановок выше 1кВ сети с заземлённой нейтралью выполняется с учётом сопротивления  или допустимого напряжения прикосновения.

Расчёт по допустимому сопротивлению приводит к неоправданному перерасходу проводникового материала и трудозатрат при сооружении ЗУ для ПС небольшой площади, не имеющих естественных заземлителей.

Заземляющие устройства для установок 110кВ и выше выполняются из вертикальных заземлителей, соединительных полос, полос, проложенных вдоль рядов оборудования, и выравнивающих полос, проложенных в поперечном направлении и создающих заземляющую сетку с переменным шагом.

Время действия релейной защиты: ;

Напряжение прикосновения: ;

Коэффициент прикосновения:

                                                                             (9.3)

где - длина вертикального заземлителя (5м), м; - длина горизонтальных заземлителей (525м по плану), м; а – расстояние между вертикальными заземлителями (5м), м; - площадь заземляющего устройства (S=60х70), м2; - параметр, зависящий от сопротивления верхнего и нижнего слоя земли ( и  соответственно для  и ,  [[4] стр.598]; - коэффициент определяемый по сопротивлению тела человека и сопротивлению растекания тока от ступней :

                                                                                    (9.4)

где ;

Потенциал на заземлителе

                                                                                    (9.5)

Напряжение заземляющего устройства:

                                                                                      (9.6)

Сопротивление сложного заземлителя, преобразованного в расчётную модель:

                                                                          (9.7)

где

  при  ;                                         (9.8)

 при  ;                                       (9.9)

- эквивалентное удельное сопротивление земли, Ом·м [табл.7.6 [4]];  - общая длина вертикальных заземлителей;  - глубина залегания ()

Согласно

Напряжение на заземлителе

Сопротивление заземляющего устройства

План преобразуем в расчётную схему (квадратную) со стороной:

Число ячеек по стороне квадрата:

принимаем

Длина полос в расчётной модели:

Длина стороны ячейки:

Число вертикальных заземлителей по периметру контура:

Общая длина вертикальных заземлителей:

Относительная глубина:

, тогда

по табл.76 [4] для  

;

Общее сопротивление сложного заземлителя:

Как видно

Необходимо применять меры для снижения  путём использования подсыпки гравия в рабочих местах слоем толщиной 0,2м, тогда  

Подсыпка гравием не влияет на растекание тока с заземляющего устройства, так как глубина заложения заземлителей 0,7м больше толщины слоя гравия, поэтому соотношение  и значение М остаются неизменными.

Напряжение на заземлителе

, что меньше допустимого (10кВ).

Допустимое сопротивление заземлителя:

                  

Напряжение прикосновения:

, что меньше допустимого 400В.

Определим наибольший джопустимый ток, стекающий с заземлителей подстанции при однофазном КЗ:

.

При больших токах необходимо снижение , за счёт учащения сетки полос или дополнительных вертикальных заземлителей.




10.          Смета на сооружение подстанции.


Таблица 10.1

Смета на сооружение подстанции.


Наименование

Количество*цена

Стоимость, тыс. руб.

Трансформатор

2*84

168

Мостик с выключателями и неавтоматической перемычкой

1*84

84

КУН 10кВ (22отх. линии 630А)

22*1110

24,42

вводные яч.- 4шт секционные яч.- 2шт

1600А

8*1220

9,76

Оборудование ВЧ связи

6

6

Постоянная часть затрат

400

400

Итого:


692,2























ЗАКЛЮЧЕНИЕ.


В дипломном проекте рассмотрены вопросы присоединения подстанции к существующей сети 110кВ, выполнены выбор рационального варианта трансформаторов на подстанции, расчёты установившихся режимов электрической сети на базе программы «RASTR», расчёт токов короткого замыкания произведён с помощью программы TKZ3000, выполнен выбор оборудования и разработано конструктивное выполнение подстанции.

К исполению принята подстанция 110/10кВ, выполненная по схеме «Мостик с выключателями в цепях трансформаторов и неавтоматической перемычкой». Подстанция выполнена с перспективой расширения в габаритах схемы «Двойная система сборных шин с обходной». На подстанции установлено два трансформатора ТРДН-25000/110/10. Сторона низшего напряжения выполнена из ячеек КРУН К-47, К49.

Выполнен расчёт релейной защиты понижающих трансформаторов (дифференциальная защита, МТЗ трансформатора, МТЗ от перегрузки).

Выбор наилучшего варианта выполнен на основе сравнения приведённых затрат.

Выполнены мероприятия по  электробезопасности объекта (расчёт грозозащиты и заземления подстанции)

Библиографический список


1.           Ананичева С.С. Справочные материалы для курсового и дипломного проектирования. Екатеринбург: УГТУ-УПИ, 1995. 55 с.

2.            Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. М.: Энергоатомиздат, 3-е изд., 1987. 648 с.

3.           Рокотян С.С., Шапиро И.М. Справочник по проектированию электроэнергетических систем. 3-е изд. М.: Энергоатомиздат, 1995. 349 с.

4.           Неклепаев Б.Н., Крючков И.П. Электроэнергетическая часть станций и подстанций. М.: Энергоатомиздат, 1989. 605 с.

5.           Степанчук К.Ф. Техника высоких напряжений. Минск: Высшая школа, 1983. 265 с.

6.           Справочник по электроснабжению и электрооборудованию: в 2 т./ Под общ. Ред. А.А. Федорова. Т.2. Электрооборудование. – М.: Энергоатомиздат, 1987. -592 с.; ил.

7.           Электротехнический справочник: В 3-х т. Т. 3. 2 кн. Кн. 1. Производство и распределение электрической энергии (Под общ. Ред. Профессоров МЭИ: И.Н. Орлова (гл. ред.) и др.) 7-е изд., испр. И доп. – М.: Энергоатомиздат, 1988. 880 с. Ил.

8.           Бургсдорф В.В., Якобс А.И. Заземляющие устройства электроустановок. М.: Энергоатомиздат, 1987. 400 с.

9.           Богатырёв Л.Л., Богданова Л.Ф. Расчёт релейной защиты элементов электроэнергетической системы. Екатеринбург, УГТУ-УПИ, 1995. 38 с.

10.       Правила устройства электроустановок. М.: Энергоиздат, 1986ю 648 с.

11.       Проектирование подстанций: Учеб. Пособие / М.Н. Гервиц, С.Е. Кокин, В.П. Нестеренков. Свердловск: УПИ, 1988. 85 с.

Методы расчёта параметров электрических сетей и систем: Методическое пособие по курсу «Электрические системы и сети» / С.С Ананичева, П.М. Ерохин, А.Л. Мызин. – Екатеринбург: УГТУ-УПИ, 1977. 55 с.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.