Влияние тяжелых металлов на растения
План
1)
введение
2)
влияние основных тяжелых металлов
на растения:
а) кобальт;
б) молибден;
в) никель;
г) марганец;
д) медь;
е) цинк.
3) заключение
4) список использованной литературы
Введение
Тяжелые
металлы(Cu, Ni, Со, Pb, Sn, Zn, Cd, Bi, Sb, Hg) относятся к микроэлементам. То
есть химическим элементам, присутствующим в организмах в низких концентрациях
(обычно тысячные доли процента и ниже). Изучение
минерального питания растительных организмов включает в себя знакомство и с
микроэлементами.
В настоящее время при помощи специальных, особо чувствительных
методов удалось определить в составе организмов свыше 60 таких химических
элементов. Однако можно утверждать, что названное число не является пределом и
в состав организмов в самом деле входят все известные химические элементы и их
изотопы, (как стабильные, так и радиоактивные).
Химические элементы, которые, входя в состав организмов растений,
животных и человека, принимают участие в процессах обмена веществ и обладают
выраженной биологической ролью, получили название биогенных элементов. К числу
биоэлементов относятся: азот, водород, железо, йод, калий, кальций, кислород,
кобальт, кремний, магний, марганец, медь, молибден, натрий, сера, стронций,
углерод, фосфор, фтор, хлор, цинк.
Указанный перечень будет, несомненно, увеличиваться по мере роста
наших знаний. Например, биогенное значение кобальта и молибдена определилось недавно.
Некоторые элементы биогенны только по отношению к определенным классам, родам,
а иногда и видам организмов. Например, бор необходим для растений, но пока не
может считаться биогенным по отношению к животным и человеку.
Значительное количество химических элементов, постоянно
обнаруживаемых в организмах, оказывает определенное влияние на течение
процессов обмена веществ и на ряд физиологических функций в эксперименте,
однако еще не известно, какую роль эти элементы играют в организмах в природных
условиях, и поэтому их биогенное значение пока сомнительно. К таким элементам
относятся алюминий, барий, бериллий, бром, висмут, галлий, германий, кадмий,
литий, мышьяк, никель, олово, радий, ртуть, рубидий, свинец, серебро, сурьма,
титан, уран, хром, цезий.
Количественное содержание биоэлементов, входящих в состав
организмов, сильно варьирует в зависимости от среды обитания, способа питания,
видовой принадлежности и т. п.
Основную массу живого вещества (99,4%) составляют так называемые
макроэлементы: О, С, Н, Са, N, К, Р, Мg, S, Cl, Na.
К числу микроэлементов, содержание которых в организме исчисляется
тысячными и даже триллионными долями процента, относятся: железо, кобальт,
марганец, медь, молибден, цинк, кадмий, фтор, йод, селен, стронций,
бериллий, литий и др.
Микроэлементам, несмотря на их малое количественное содержание в
организмах, принадлежит значительная биологическая роль. Помимо общего
благоприятного влияния на процессы роста и развития, установлено специфическое
воздействие ряда микроэлементов на важнейшие физиологические процессы —
например, фотосинтез у растений.
Связь между ролью элемента в живом организме и положением его в
периодической системе хорошо прослежена для многих микроэлементов, однако
далеко еще не все стороны этой зависимости изучены в достаточной степени.
Обратимся теперь к сущности влияния микроэлементов на живой
организм. Наиболее характерна высокая биологическая активность микроэлементов,
т. е. способность чрезвычайно малых доз их оказывать сильное действие.
Мощное воздействие микроэлементов на физиологические процессы и
организме объясняется тем, что они вступают в теснейшую связь с биологически
активными органическими веществами — гормонами, витаминами. Изучена также их
связь со многими белками и ферментами. Именно указанными
взаимоотношениями и определяются основные пути вовлечения микроэлементов в
биологические процессы.
В настоящее время твердо установлена связь между микроэлементами и
витаминами. Показано, что марганец необходим для образования в ряде растений
витамина С (аскорбиновой кислоты), предохраняющего человека и, некоторых
животных от заболевания цингой. Есть данные, показывающие, что введением
марганца можно вызвать образование аскорбиновой кислоты в организме тех
видов животных, которые обычно неспособны к выработке этого витамина.
Марганец, по-видимому, нужен и для действия витамина D (антирахитного) и B1 (антиневритного).
Намечается связь между микроэлементом цинком и витамином В1. Однако
наиболее интересно открытие антианемического витамина B12, недостаток
которого в организме приводит к тяжелым формам анемии (злокачественному
малокровию). Оказалось, что этот витамин — соединение микроэлемента кобальта
и сложной органической группы.
Как известно, многие металлы, преимущественно микроэлементы, в
растворах обладают ярко выраженным каталитическим действием, т. е. способны в
значительной степени, в сотни тысяч и миллионы раз, ускорять течение
химических реакций. Это каталитическое действие микроэлементы проявляют и в
живом организме, особенно тогда, когда они вступают во взаимодействие с
органическими веществами, содержащими азот.
Максимальную каталитическую активность металлы как таковые
или, чаще, их металлоорганические (органо-минеральные) соединения приобретают,
вступая в соединения с белками. Именно такое строение имеют многие
биологические катализаторы — ферменты. Помимо значительного повышения активности,
роль белкового компонента заключается в придании таким соединениям, в основном
ферментам, специфичности действия.
При взаимодействии микроэлементов с белковыми компонентами
ферментов образуются металлоэнзимы. Состав большой группы металлоэнзимов
характеризуется наличием в них металла в качестве стабильного комплекса
(железосодержащие ферменты — каталаза, пероксидаза, цитохромы, цитохромоксидаза
и др.).
Геохимические процессы, непрерывно протекающие в земной коре, и
эволюция химического состава организмов— процессы сопряженные. Жизнь, по В. И.
Вернадскому, не составляет внешнего, случайного явления на земной поверхности,
а теснейшим образом связана со строением земной коры.
Содержание элементов в живом веществе пропорционально составу
среды обитания организма с поправкой на растворимость соединений, включающих
эти элементы.
С геохимическими провинциями земли тесно связаны биогеохимические
провинции—области, характеризующиеся более или менее одинаковой концентрацией
одного или нескольких элементов. В пределах биогеохимических провинций с
избыточным или недостаточным содержанием определенных элементов наступает
своеобразная биологическая реакция флоры и фауны данной области, что
проявляется в эндемических заболеваниях растений и животных—биогеохимических
эндемиях.
Влияние основных тяжелых металлов на растения
КОБАЛЬТ
В
биосфере кобальт преимущественно рассеивается, однако на участках, где есть
растения — концентраторы кобальта, образуются кобальтовые месторождения. В
верхней части земной коры наблюдается резкая дифференциация кобальта — в глинах
и сланцах в среднем содержится 2·10-3% кобальта, в песчаниках 3·10-5,
в известняках 1·10-5. Наиболее бедны кобальтом песчаные почвы лесных
районов. В поверхностных водах его мало, в Мировом океане его лишь 5·10-8%.
Будучи слабым водным мигрантом, он легко переходит в осадки, адсорбируясь
гидроокисями марганца, глинами и другими высокодисперсными минералами.
Содержание кобальта в почвах определяет количество этого элемента
в составе растений данной местности, а от этого зависит поступление кобальта в
организм травоядных животных.
Постоянно
присутствуя в тканях растений, кобальт участвует в обменных процессах. В
животном организме его содержание зависит от его уровня в кормовых растениях и
почвах. Концентрация кобальта в растениях пастбищ и лугов в среднем составляет
2,2·10-5—4,5·10-5% на сухое вещество. Способность к
накоплению этого элемента у бобовых выше, чем у злаковых и овощных растений. В
связи с высокой способностью к концентрации кобальта морские водоросли по его
содержанию мало отличаются от наземных растений, хотя в морской воде его
значительно меньше, чем в почвах. Кобальт участвует в ферментных системах
клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует
рост, развитие и продуктивность бобовых и растений ряда других семейств. В микродозах кобальт является необходимым
элементом для нормальной жизнедеятельности многих растений и животных. Вместе с тем повышенные концентрации соединений кобальта
являются токсичными.
Кобальт
применяют в сельском хозяйстве как микроудобрения –
удобрения, содержащие микроэлементы (В, Cu, Mn, Zn, Со и др.), т. е.
вещества, потребляемые растениями в небольших количествах.
Известкование почв снижает усвояемость растениями кобальта. Так
же влияет избыток марганца и железа в почвах; наоборот, фосфор усиливает
поступление кобальта в растения.
Применение кобальтовых солей (сернокислого кобальта) в качестве
удобрений, как оказалось, способствует ускорению созревания ячменя, повышает
урожай семян красного клевера, увеличивает содержание жира в семенах льна. Под
влиянием кобальта повышается урожайность сахарной свеклы.
Внесение 300 г сернокислого кобальта на 1 га значительно повышает
урожай винограда: вес ягод увеличивается на 35%, сахаристость — на 14%,
кислотность снижается на 10%.
М. Я. Школьник предлагает вносить кобальт в качестве удобрений в
следующих дозах: внесение в почву перед посевом — 2—6 кг на 1 га; внесение в междурядье
в виде подкормки — 0,5 кг на 1 га; внекорневое питание— 0,1-процентный
раствор; намачивание семян — 0,1-процентный раствор. При внесении кобальтовых
удобрений с самолета применяется измельченный сернокислый кобальт в дозе 1,415
кг на 1 га.
Помимо чистых химических соединений кобальта, в качестве удобрений
могут быть также использованы продукты переработки шлаков никелевого
производства и колчеданных огарков.
МОЛИБДЕН
Среднее содержание молибдена в почвах составляет 0,0003%, в
изверженных породах — 0,000154%, в осадочных породах —0,00024%. Больше всего
молибдена находится в болотистых
почвах и в почвах тундр. Богатство почв органическими веществами обусловливает
низкий окислительный потенциал среды.
Наиболее растворимы в воде и доступны для растений соединения Мо6
в нейтральной и слабощелочной среде. На кислых почвах молибден мало доступен
растениям, поэтому в таких условиях сказывается положительно внесение
молибденовых удобрений. Влияние молибдена зависит от многих факторов: на кислых
почвах эффект молибдена зависит от содержания подвижного алюминия (чем больше
алюминия, тем выше эффект молибдена). Между молибденом и марганцем наблюдается
обратная зависимость—избыток марганца вызывает недостаток молибдена, и,
наоборот, присутствие молибдена улучшает состояние растений (льна), болеющих
на кислых почвах от избытка марганца. Антагонистическая зависимость
наблюдается также между молибденом и медью (молибден вытесняет медь).
Молибден особенно важен для бобовых растений; он концентрируется в
клубеньках бобовых, способствует их образованию и росту и стимулирует фиксацию
клубеньковыми бактериями атмосферного азота. Входя в состав фермента
нитраторедуктазы (являющейся по своему строению молибдофлавопротеином),
молибден восстанавливает нитраты у высших и низших растений и стимулирует
синтез белка в них. Поэтому в условиях недостатка молибдена в растениях
накапливаются нитраты, одновременно уменьшаются азотистая растворимая фракция
и уровень азотистой белковой фракции. Молибден и марганец, по-видимому, катализируют
отдельные реакции, каждая из которых влияет на концентрацию аминокислот —
промежуточных продуктов белкового обмена. Молибден активирует реакцию, ведущую
от нитратов к образованию аминокислот, тогда как марганец, по-видимому,
активирует дальнейшие фазы превращения аминокислот в белки.
Молибден оказывает положительное влияние не только на бобовые
растения, но и на цветную капусту, томаты, сахарную свеклу, лен и др.
Растениями-индикаторами недостатка молибдена могут быть томаты, кочанная капуста,
шпинат, салат, лимоны.
Молибден необходим не только для процесса синтеза белков в
растениях, но и для синтеза витамина С и каротина, синтеза и передвижения
углеводов, использования фосфора.
Болезни молибденовой недостаточности:
- болезнь нитевидности цветной капусты. Выражается в уменьшении
листовой пластинки. Поражает растения на кислых почвах: известкование может
предотвратить появление болезни. Описана преимущественно в Австралии и Новой
Зеландии.
- желтая пятнистость цитрусовых (рис.1). Выражается в появлении
желтых пятен на листьях, быстро опадающих. При этом значительно уменьшается
количество плодов. Заболевание наблюдается во Флориде (США).
Применяются различные способы внесения молибдена в качестве
удобрения. Так, урожай и сахаристость сахарной свеклы увеличиваются при
Рис. 1.
«Желтая пятнистость» грейпфрута — болезнь недостатка молибдена.
внесении в почву
путем подкормки в междурядья на 0,5 кг с 1 га, при непосредственном внесении в
почву—на 2,8 кг с 1 га. То же было установлено названным автором при изучении
действия молибдена (молибденовокислого аммония) на урожай семян красного
клевера. На неизвесткованной почве эффект молибдена значительно более выражен.
Ввиду высокой стоимости молибденовых солей рекомендуют применение
предпосевной обработки семян — 0,8 г/л. При этом методе потребность в
молибденовых солях уменьшается в сотни раз. Для внекорневого питания
потребность в молибдате аммония составляет 600 л 0,03—0,05-процентного раствора
на 1 га.
НИКЕЛЬ
Содержание никеля в почвах составляет 0,004%, в природных
поверхностных водах — 0,000 000 34%. В растениях в среднем содержится 0,00005%
на живой вес (в зависимости от вида растения, местности, почвы, климата и др.).
Растения в районе никелевых месторождений могут накоплять в себе значительные
количества никеля. При этом наблюдаются явления эндемического заболевания
растений, например уродливые формы астр, что может быть биологическим и видовым
индикатором в поисках никелевых месторождений. Морфологически измененные
анемоны в обогащенных никелем биогеохимических провинциях концентрируют
никель в 30-кратном размере; повышенное содержание никеля в почвенных растворах
и в почвах Южного Урала, обогащенных никелем в 50-кратном размере, является
причиной появления уродливых форм у сон-травы (семейство лютиковых) и грудницы
(семейство сложноцветных).
Критические значения концентрации никеля в питательном
растворе—1,5 мг/кг и в сухой массе ячменя, выращенного на такой среде — 26
мг/кг. Токсический уровень этого элемента в листьях растений начинается с
превышения 1,0 мг/кг сухой массы.
При усвоении никеля растениями происходит взаимодействие с
содержащимися в почве железом, кобальтом, хромом, магнием, медью, цинком,
марганцем; при этом ионы марганца и магния не ингибируют, а ионы кобальта,
меди, железа и цинка — ингибируют абсорбцию никеля на 25—42%. Существуют
указания на то, что растения, произрастающие на серпентиновых почвах, не проявляют
признаков токсического повреждающего воздействия никеля, в случаях, если
соотношение медь: никель равно или более 1, или соотношение железо: никель
равно или более 5. Среди растений существует различие в чувствительности по
отношению к воздействию никеля. Токсические уровни никеля в листве растений
(млн -1 сухой массы): рис 20—25, ячмень 26, виды твердой древесины
100—150, цитрусовые 55—140, сорняки 154. Типичные симптомы повреждающего
токсического действия никеля: хлороз, появление желтого окрашивания с
последующим некрозом, остановка роста корней и появления молодых побегов или
ростков, деформация частей растения, необычная пятнистость, в некоторых
случаях — гибель всего растения.
МАРГАНЕЦ
Марганец находится в почвах в среднем в количестве 0,085%. Однако
в отдельных случаях при высоком общем содержании марганца в почвах количество
усвояемых его форм, переходящих в солянокислую или солевую форму, может быть
явно недостаточно. В среднем растворимая часть Мn в почве составляет 1 —10% от общего его
содержания.
Страницы: 1, 2
|