Меню
Поиск



рефераты скачать Хроматографическое разделение углеводов

б) добавление к сорбенту флуоресцентных индикаторов и обнаружение зон в ультрафиолетовом свете;

в) опрыскивание части слоя, перенесенного с хроматограммы на липкую ленту или пластинку, реагентами, вызывающими деструкцию сахаров;

г) опрыскивание части пластинки деструктивными реагентами, например серной кислотой (предварительно большую часть хроматограммы защищают).


Последний метод применяется редко, так как, во-первых, при этом теряется существенное количество вещества, а во-вторых, как правило, приходится прокаливать пластинку.

После того как положение зон установлено, их соскабливают с пластинки шпателем или собирают «вакуум-очистителем». Можно также элюировать соединение с хроматограммы на фильтровальную бумагу. Далее к сорбенту добавляют растворитель и осадок отделяют фильтрованием или центрифугированием. Для экстракции вещества можно пользоваться аппаратом Сокслета. По возможности следует избегать употребления полярных растворителей, поскольку некоторые сорбенты в них растворяются.

Разделение сахаров методом препаративной ТСХ рассматривается на примере разделения смеси аномерных метил-2,3,6-три-О-бензил-4-О-этил-a,b-D-глюкопиранозидов.


МЕТОДИКА

ПРИГОТОВЛЕНИЕ ПЛАСТИНКИ. Суспензию 25 г силикагеля Н в 66 мл дистиллированной воды перемешивают в стакане стеклянной палочкой в течение 5 мин (до получения однородной массы) и выливают на чистую пластинку размером 20х20 см. Держа пластинку в руках, наклоняют ее в разные стороны так, чтобы суспензия равномерно распределилась по всей поверхности. Пластинку сначала помещают на горизонтальную подставку и выдерживают 2 ч при 25 °С, а затем переносят на подставку для хранения, где она сушится примерно 12 ч на воздухе. Пластинку активируют 2 ч при 130°С и медленно охлаждают до ~25°С. После того как края слоя выровнены шпателем, можно наносить образец. Толщина слоя сорбента 2 мм.

НАНЕСЕНИЕ ОБРАЗЦА. В кончик пипетки помещают тонкий ватный тампон таким образом, чтобы часть его (3—5 мм) оставалась снаружи. Раствор 0,3—0,5 г смеси аномерных метил-2,3,6-три-O-бензил-4-O-этил-D-глюкопиранозидов  в 1—2 мл хлороформа засасывают в пипетку и наносят в виде полосы на пластинку на расстоянии 2 см от ее нижнего края и 3 см от боковых краев. Чтобы полоса получилась узкой (0,5 см), необходимо между нанесениями дать хлороформу испариться.

При разделении смесей рассматриваемого типа в центре пластинки, пока она еще не высохла, отчетливо видны две полосы, расположенные на расстоянии 1 см. Эти полосы, соответствующие a- и b-D-гликозидам, видны также на сухой пластинке в длинноволновом УФ-свете.

Обнаруженные зоны собирают с пластинки, используя «вакуум-очиститель». Последний представляет собой стеклянную трубку диаметром 25 мм; на одном конце трубки имеется отверстие диаметром 6 мм, через которое засасывается сорбент. Другой конец трубки присоединен к вакуум-насосу. Для улавливания сорбента в трубку помещают кусок стеклянной ваты. К попавшему в трубку сорбенту добавляют хлороформ (20 мл), осадок отфильтровывают и промывают 20 мл хлороформа. Фильтрат упаривают при пониженном давлении и остаток повторно растворяют в хлороформе, чтобы удалить все следы сорбента. Из нижней зоны выделяют в виде бесцветного сиропа метил-2,3,6-три-О-бензил-4-О-этил-a-D-глюкопиранозид.

Из верхней зоны выделяют метил-2,3,6-три-O-бензил-4-O-этил-b-D-глюкопиранозид.

5. РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ НА ИОНООБМЕННЫХ СМОЛАХ


Впервые разделение углеводов методом распределительной хроматографии на ионообменных смолах в смесях растворителей различной полярности было описано в 1952 г. В последние годы метод был значительно усовершенствован. В качестве элюента при разделении сахаров и их производных наиболее пригоден водный спирт, и далее речь будет идти только об этом элюенте.

Одним из основных факторов, обусловливающих сорбцию сахаров точно так же, как и других полярных неэлектролитов в данном виде хроматографии, является неодинаковое распределение компонентов элюирующей смеси между смолой и внешним раствором. В случае водного спирта относительное количество воды в неподвижной фазе выше, чем в подвижной, и этим объясняется тот факт, что смолой преимущественно удерживаются полярные вещества. На состав подвижной и неподвижной фаз существенное влияние оказывает также взаимодействие смола - растворитель и смола - растворенное вещество. При

смене противоиона порядок элюирования некоторых сахаров может измениться.

Коэффициенты распределения веществ возрастают с увеличением концентрации спирта и уменьшаются с повышением температуры. За редким исключением, коэффициенты распределения растут с увеличением числа гидроксильных групп в молекуле. Введение в молекулу неполярных групп, например метильных, приводит к уменьшению коэффициента распределения. Величина последнего зависит также от положения заместителей.

В табл.5 приведены коэффициенты распределения ряда свободных сахаров.

Распределительная хроматография на ионообменных смолах была с успехом применена для разделения моно- и олигосахаридов, альдитов и производных сахаров, не содержащих ионогенных группировок, например гликозидов и частично метилированных сахаров. Этот метод можно использовать как в аналитических, так и в препаративных целях.


Таблица 5. Коэффициенты объемного распределения (Dv) некоторых моносахаридов и ангидросахаров при различных температурах и концентрациях спирта




Сахара

Пористая смола (SO42-)

75°С

Смола малой

Емкости (SO42-)

75 °С

Дауэкс (SO42-)

90°С

Дауэкс (Li+)

75 °С

Амберлит IR-120 (Li+)

75 °С

100 °С

                                     Концентрация этанола, %



88

86

90

86

92,4

92,4

Эритроза

3,08




1,9



Треоза

3,84




1,4



Рибоза

6,55

4,06

5,80

4,98


4,0

3,1

Арабиноза

10,1

6,26

9,79

7,56


3,8

3,0

Ксилоза

12,5

7,38

12,1

9,19

2,7

3,0

2,4

Фруктоза

13,5

8,04

13,8

10,3


5,6

4,3

Сорбоза


8,93

15,6

11,0


4,6

3,7

Манноза

16,4

9,37

16,9

11,8


5,3

4,4

Галактоза

23,4

13,0

24,4

16,1

5 7

6,8

5,3

Глюкоза

28,1

14,9

29,5

19,5

4 8

5,4

4,4

Альтроза

16,6




4 2



Рамноза

4,75

2,80

4,11

3,54


1.4

1,2

Фукоза


3,25

4,96

4,19


2,4

1,8


На рис.4 приведена принципиальная схема прибора, используемого для разделения сахаров. Элюент (спирт — вода) помещают в колбу Мариотта и обезгаживают кипячением, чтобы предотвратить появление пузырьков воздуха в колонке. За колбой расположена открытая градуированная трубка, обычно заполненная элюентом. Скорость движения элюента в системе регулируют, перекрывая выходное отверстие колбы. Элюент подается в колонку поршневым насосом из нержавеющей стали который помещают ниже остальных аппаратов системы элюирования..


Рис. 4 Аппаратура для проведения хроматографического разделения и автоматического анализа сахаров орциновым методом.


Давление измеряют манометром Бурдона, снабжённым прерывателем. Последний отключает насос и нагреватель, если давление в системе превышает норму (80 атм) и также если оно падает из-за утечки жидкости. Анализ можно проводить на колонках, имеющих пористое дно и тефлоновое уплотнение на верхнем конце колонки. Если работа ведется при высоком давлении, не рекомендуется пользоваться колонками со стеклянными фланцами. Вместо них можно использовать стеклянные трубки с приклеенными эпоксидной смолой муфтами из поливинилхлорида.

Чтобы в колонке поддерживалась требуемая температура(70-90 °С), по рубашке колонки циркулирует вода из термостата. Повышение температуры колонки приводит к сужению зон вымываемых веществ и снижению рабочего давления.

Смолы, применяемые в распределительной хроматографии, представляют собой сильноосновные аниониты или сильнокислые катиониты, основу которых составляет сополимер стирола и дивинилбензол. В аналитических колонках, диаметр которых равен 2—6 мм, а скорости элюирования высокие (8—20 мл-см-2мин-1), рекомендуется использовать мелкозернистые смолы с размером частиц 8—13 или 10—15 мкм. Для препаративнго разделения сахаров на широких колонках (диаметр 12—25 мм) и при меньшей скорости элюирования можно применять более грубые смолы.

Колонку промывают элюентом до тех пор, пока не образуется однородный слой ионита. После этого растворитель, находящийся над слоем смолы, отсасывают, в колонку переносят новую порцию суспензии и операцию повторяют. Перед хроматографическим разделением заполненную колонку приводят в состояние равновесия с элюентом данного состава, промывая ее элюентом не менее 16 ч.

АНАЛИЗИРУЮЩАЯ СИСТЕМА. Определение сахаров и их различных производных в элюате удобно проводить автоматически орциновым методом. Раствор реагентов хранят в бутыли из темного стекла, откуда он и подается в систему при помощи поршневого насоса. Между насосом и тройником, в котором происходит смешение элюата с раствором красителя, расположено устройство для гашения (демпфирования) пульсаций давления (рис. 4). Смесь элюата с раствором красителя пропускают через змеевик длиной 20 м и диаметром 1,2 мм, погруженный в термостатируемую полигликолевую баню (100°С). Время нахождения смеси в змеевике около 10 мин. Интенсивность окраски раствора определяется спектрофотометрически при 420 нм проточных кюветах с l 2—15 мм. Удобно пользоваться системой из двух последовательно соединенных кювет разной длины: если на более длинной кювете самописец «зашкаливает», измерения проводят на более короткой кювете. На колонке диаметром 4 мм удается разделить и проанализировать от 2 до 20 мкг веществ. На колонках меньшего или большего диаметра можно проанализировать соответственно меньшее или большее количество смеси.

Достоинством вышеописанной схемы анализа является высокая точность количественного определения и отсутствие необходимости в частом построении калибровочных кривых (при постоянстве условий анализа). Если удается достичь полного разделения компонентов, отклонение от среднего значения в двух аналогичных анализах составляет 1енее 1%. Однако весь элюат расходуется за одно определение, и потому не удается провести дополнительное исследование фракций.

Если проводится препаративное разделение или если проводимые исследования требуют повторного разделения и дополнительных анализов компонентов смеси, то для разделения потока элюата и введения растворов реагентов следует использовать перистальтический насос. Такая схема анализа (рис. 5) отличается большей гибкостью, однако недостатком ее является более низкая точность количественных определений в связи с тем, что соединительные трубки насоса быстро изнашиваются и их приходится менять через 14 дней.

Рис. 5. Двухканальный анализатор для одновременного определения восстанавливающих сахаров и альдитов.

М- сместители; Р1 и Р2 – гасители пульсации; L – флуоресцентная лампа трубки; А – орционный канал: 16-ти % водный раствор орциона, 60% серная кислота; В – периодат-формальгидный канал: 0,015Мметапериодат натрия, содержащий 5 мл конц. соляной кислоты на литр


На рис.5 приведена схема анализа с применением перистальтического насоса. Элюат делится на три потока и одновременно анализируется орциновым (А) и периодат-формальдегидным (В) методами. Третий поток подается на коллектор фракций или отбрасывается. В элюате дополнительно определяют содержание восстанавливающих сахаров периодатным или феррицианидным методом. Выделенные ациклические альдиты анализируются автоматически периодат-формальдегидным методом. В кислой среде они окисляются периодатом с образованием формальдегида, который определяют до реакции с пентандионом-2,4 в растворе ацетата аммония. Избыток периодата предварительно восстанавливают арсенитом. В условиях анализа при окислении большинства альдитов образуется с высоким выходом формальдегид, в то время как при окислении большей части альдоз формальдегид образуется лишь в незначительных, с трудом детектируемых количествах. Исключение составляет D-фруктоза, ее можно достаточно точно определить этим методом. Периодат-формальдегидегидный метод в совокупности с орциновым используется для анализа сложных смесей сахаров и альдитов. Точность его сравнима с точностью орцинового метода.

6. ИСПОЛЬЗОВАНИЕ ХРОМАТОГРАФИИ НА БУМАГЕ ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ САХАРОВ В РАСТИТЕЛЬНОМ МАТЕРИАЛЕ


В последнее время хроматографию на бумаге все чаще начинают использовать в качестве самостоятельного количественного метода. При этом весьма широкое распространение получает количественная хроматография углеводов: моно-, ди- и олигосахаридов, а также продуктов гидролиза крахмала, целлюлозы и других полимеров. Количественное определение индивидуальных веществ, разделяемых на хроматограммах, производится различными способами. Существует ряд методов, при помощи которых можно определить концентрацию разделенных веществ непосредственно на бумаге. Это методы: визуальное сравнение (полуколичественный), измерение площади пятен, измерение интенсивности окраски пятен, определение максимальной плотности окраски пятен. В случае работы с радиоактивными веществами можно легко установить активность этих соединений при помощи счетчика Гейгера — Мюллера.

Однако более широко применяемым и, по-видимому, наиболее точным методом является элюирование отдельных соединений с последующим колориметрированием или определением поглощения в ультрафиолетовой области. При работе с радиоактивными веществами можно производить измерение общей или удельной активности элюируемого вещества.

Точность методов количественного хроматографического анализа равна 10%.

7. ГАЗОЖИДКОСТНАЯ ХРОМАТОГРАФИЯ ТРИМЕТИЛСИЛИЛЬНЫХ ПРОИЗВОДНЫХ САХАРОВ


Газожидкостная хроматография (ГЖХ) триметилсилиловых эфиров (ТМС) производных углеводов представляет собой хорошо отработанный метод, который в течение ряда лет используется для анализа сложных смесей сахаров, таких, как кукурузная патока или в общем случае гидролизаты полисахаридов. С совершенствованием методов силилирования создавалась новая хроматографическая аппаратура и изыскивались новые жидкие фазы. Все это позволило не только улучшить разделение сложных смесей сахаров, но и расширить область применения ГЖХ вплоть до разделения гептасахаридов. Бробст и Лотт разработали метод, позволяющий проводить анализ образцов, содержащих небольшие количества воды, и, используя его, смогли определить олигосахаридный состав кукурузной патоки вплоть до тетрасахаридов. Позднее в качестве силилирующего агента стал использоваться N-(триметилсилил) имидазол и смесь его с пиридином, ставшая коммерческим реактивом. Показано, что данный реактив обладает хорошими растворяющими свойствами и может использоваться для силилирования влажных образцов сахаров.

Этот метод не только допускает наличие в образце до 40 мг воды, но и существенно увеличивает устойчивость триметилсилиловых эфиров, так как в смеси присутствует большой избыток реагента. Поэтому стандартная калибровочная смесь устойчива в течение нескольких месяцев, что весьма важно для хранения контрольных образцов редких олигосахаридов.

8. ГАЗОЖИДКОСТНАЯ ХРОМАТОГРАФИЯ МЕТИЛИРОВАННЫХ САХАРОВ


Газожидкостная хроматография представляет собой надежный и широко распространенный метод качественного и количественного анализа сахаров. Разделение методом ГЖХ метиловых эфиров сахаров и их производных приобрело особенно большое значение при исследовании структуры олиго- и полисахаридов. Восстанавливающие метилированные сахара нельзя изучать методом ГЖХ в первую очередь потому, что они прочно сорбируются на неподвижной фазе или носителе, и их, как правило, переводят в метилгликозиды. Последние либо непосредственно анализируют на газовом хроматографе, либо, если время удерживания метилгликозидов слишком велико, предварительно ацетилируют или силилируют.

Иногда разрешающая способность колонки недостаточна для разделения аномеров пиранозных и фуранозных форм некоторых метилированных гликозидов или их производных. В таком случае метилированные сахара анализируют в виде ацетатов или триметилсилиловых эфиров альдитов.

Как было установлено, детекторы дают различный отклик на различные метилированные сахара, содержащиеся в одинаковых концентрациях. Однако пока не известно, является ли это следствием особенностей, присущих детекторам, или следствием потерь некоторых компонентов при подготовке образца к анализу и преимущественной сорбции их на колонке. Твердые правила выбора колонки еще не выработаны. Тем не менее изучение литературных данных показывает, что большинство исследователей предпочитают полярные фазы, которые, по-видимому, дают лучшее разрешение всех типов производных метилированных сахаров. Обычно время удерживания соединения выражают по отношению ко времени удерживания стандарта. Это позволяет избежать расхождений, наблюдаемых для абсолютных значений времени удерживания и обусловленных нестандартностью условий анализа. Результаты определения относительного времени удерживания на одной и той же колонке воспроизводятся с точностью до ±2%, а на разных колонках с одинаковыми неподвижными фазами - с точностью до ±5%.

Время удерживания многих производных углеводов достаточно велико, что приводит к плохому разделению смесей, обусловливает низкую концентрацию элюируемых компонентов в газе-носителе, и в итоге приводит к увеличению ошибки при определении содержания компонентов в смесях. Поэтому при проведении разделения метилированных сахаров желательно подбирать такие производные и такие условия работы, при которых все компоненты смеси элюировались бы с колонки в течение 70—90 мин с момента их введения. Если детектирование не сопровождается разрушением сахаров, их можно собирать на выходе с хроматографа.

Заключение


Хроматографические методы при разделении и очистке полисахаридов, так же как и в других областях химии природных соединений, играют исключительно важную роль. Однако вследствие своеобразия полисахаридов далеко не все разновидности хроматографии используются в равной мере. Наличие даже в очищенных полисахаридах набора полимерогомологов с близкой хроматографической подвижностью и близкими сорбционными свойствами, их коллоидный характер, а также склонности к ассоциациям – все это обусловливает малую эффективность таких видов хроматографии, как бумажная, распределительная и адсорбционная хроматография.

Вместе с тем ионообменная хроматография имеет исключительно важное значение при разделении и очистке полисахаридов.

Широко применяемые ДЭАЭ-целлюлоза и эктеолацеллюлоза позволяют легко отделить нейтральные и кислые полисахариды: нейтральные обычно не задерживаются или мало задерживаются на названных анионитах, кислые, в зависимости от своей природы, более или менее прочно удерживаются и элюируются растворами солей, буферными растворами или щелочами. На анионитах разделяются различные кислые полисахариды в зависимости от степени их кислотности. Применение ДЭАЭ-целлюлозы в боратной форме позволяет разделять и нейтральные полисахариды. Недавно были разделены нейтральные полисахариды (гликоген) при помощи ДЭАЭ-целлюлозы на фракции, отличающиеся величиной частиц./3/

Для разделения сахаров применяются следующие методы:

1.                Хроматография на колонках с углем применяется для разделения углеводов на классы в зависимости от степени их полимеризации (моносахариды, дисахариды, трисахариды т. д.).

2.                Хроматография на колонке с целлюлозой имеет широкую область применения, что нет необходимости рассматривать частные примеры его использования.

3.                Качественная тонкослойная хроматография применяется для разделения углеводов, в том числе незамещенных моно- и олигосахаридов и различных производных сахаров и сложных эфиров, циклических ацеталей и др.

4.                Количественная тонкослойная хроматография сахаров может применяться в случае  смесей, компоненты которых можно полностью разделить

5.                Препаративная тонкослойная хроматография сахаров используется для разделения  смеси аномерных сахаров( метил-2,3,6-три-О-бензил-4-О-этил-a,b-D-глюкопиранозидов).

6.                Газожидкостная хроматография используется для разделения триметилсилильных производных сахаров, метилированных сахаров.

Из  своей теоретической работы я могу сделать следующие выводы:

- для идентификации олигосахаридов наилучшим методом считается бумажная хроматография

- для разделения сахаров наилучшим методом считается тонкослойная хроматография.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

1.                 Чмутов К.В. Хроматография, ее теория и применение. - М.: Издательство Академии наук СССР –1960г.

2.                 Хомченко Г.П. Химия для поступающих в вузы: Учеб. пособие. 2-е изд., -М.: В. ш., 1995г.

3.                 Степаненко Б.Н. Химия и биохимия углеводов (полисахариды): Учеб. пособие для вузов. – М.: Высш. школа, 1978г.

4.                 Жуховицкий А.А. Руководство по газовой хроматографии. – М.: Мир, 1969г.

5.                 Кочетков Н.К. Методы химии углеводов. - М.: Мир, 1967г.

6.                 Хорлин А.Я.Методы исследования углеводов.- М.:Мир, 1975г


Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.