Меню
Поиск



рефераты скачать Фізичні основи квантової электроніки

в) будова та принцип роботи напівпровідникових лазерів.    

 При взаємодії електрона із зовнішнім впливом у напівпровідниках, електрон, поглинаючи енергію, переходить зі стану з низьким енергетичним рівнем у стан з високим енергетичним рівнем. Розглянемо p-n-перехід, який зображено на рис. 5.4. Якщо до нього прикласти пряма напруга UR, те в p-області буде відбуватися інжекція електронів, а в n-області - дірок (у результаті дифузії неосновних носіїв зарядів). Ці неосновні носії, зустрічаючись із основними, будуть рекомбінувати, випромінюючи світло з довжиною хвилі, що відповідає ширині забороненої зони .


Рис. 5.4 Будова забороненої

зони напівпровідника


Оскільки дифузійна довжина електронів багато більше, ніж дифузійна довжина дірок, то світлове випромінювання виникає, в основному, в p-області. Прилад, що використовує p-n-перехід, який рівний ширині забороненої зони Eg, називають напівпровідниковим лазером з гомоструктурным переходом. Напівпровідниковий лазер є "граничним приладом". Якщо збільшити струм інжекції (тобто збільшувати UR - пряму напругу), то при перевищенні деякого граничного значення Iпор виникає різке лінійне збільшення потужності лазера на виході. Поблизу Iпор спостерігається якісна зміна процесу: повільний ріст потужності випромінювання переходить стрибком у режим насичення при генерації випромінювання.

При I < Iпор випромінювання лазера являє собою суму фотонів з випадковими фазами – некогерентне випромінювання.

В області I > Iпор при переході в режим генерації відбувається впорядкування фази й виникає когерентне випромінювання.

Напівпровідниковий лазер, також як і лазери інших типів, являє собою резонатор з поміщеним у його середину активним середовищем. Оскільки коефіцієнт заломлення напівпровідникових матеріалів великий, то площини спайності лазерного кристала (кристалографічні площини росту) служать відбивними дзеркалами резонатора.

Слабке світло, що виникає в лазері під дією спонтанних переходів, підсилюється активним середовищем при багаторазовому відбитті від резонаторних дзеркал, розташованих на торцях кристала. В остаточному підсумку утвориться лавина вимушено індукованих фотонів, що й утворить лазерний промінь. Лазерна генерація виникає тоді, коли оптичне підсилення компенсує втрати енергії в середині резонатора, що складаються із втрат в активному середовищі й втрат на відбиття. Це відповідає граничному струму Iпор інжекції. При подальшому збільшенні струму інжекції підсилення рівне граничному підсиленню й супроводжується різким збільшенням потужності оптичного випромінювання лазера.

Крім лазерів на p-n-переході широко використаються лазери на гетеропереходах (подвійних гетероструктурах). Робота напівпровідникового лазера на гомо-p-n-переході вперше спостерігалася Жоресом, Івановичем та Алфьоровим у лабораторії напівпровідників ФТИ ім. А. Ф. Іоффе в 1962 році на кристалах GaAs (рис. 5.5.).

Це був гомолазер GaAs, виготовлений за допомогою дифузії акцепторної домішки. Граничне значення струму було , що через виділення значного тепла при кімнатній температурі унеможливлювало його роботу в безперервному режимі.


Рис. 5.5. принципова схема лазера на гомо-p-n-переході.


Практична реалізація безперервного режиму була вперше досягнута в США в "Bell Laboratories" Н. Хаясі й М. Б. Панішем в 1970р. Ними був виготовлений лазер на подвійній гетеро структурі  (рис. 5.6) з різною шириною забороненої зони в p- і n- областях, що дозволило зменшити граничну щільність струму при кімнатній температурі до .

Зниження граничного струму в гетеролазерах досягається за рахунок каналювання інжектованих носіїв у вузькій області, обмеженої потенційними бар’єрами гетеро структури, а також за рахунок каналювання спонтанного випромінювання в цій же області під дією хвилевого ефекту, що виникає із-за розходження в показниках заломлення матеріалів гетероструктури.

Якщо позитивна напруга живлення прикладена до p-області, а негативна до n-області, то в активний шар інжектуються дірки та електрони, де вони рекомбінують з випромінюванням енергії. Світло досягає площин резонатора й відбиваючись від них, не виходить в інші шари структури через різницю показників заломлення. когерентне лазерне випромінювання виникає коли надання енергії перевищує певні межі.

Довжина хвилі лазерного випромінювання визначається матеріалом активного шару. Наприклад, якщо активний шар виготовлений з GaAs, то  при кімнатній температурі, якщо з , де x - молярна концентрація Al у структурі, то . Якщо використати , то від.

Оптичні волокна для волоконно-оптических ліній зв'язку (ВОЛС) мають мінімальні втрати на довжинах хвиль . Для передачі інформації з ВОЛС найкраще використати лазери з активним шаром з . За розробку таких лазерів Ж.И. Алфьоров одержав Нобелівську премію в грудні 2000 року.

Напівпровідникові лазери використаються в оптичних накопичувачах, CD-дисководах для запису й зчитування інформації в оптичних пристроях. Крім того, лазери використовуються в пристроях обробки інформації інтегральної оптики, а також в оптичних комп'ютерах, де відбувається паралельна й послідовна обробка цифрової й аналогової інформації.

Розділ 6. Параметричні підсилювачі.


Волоконно-оптичні параметричні підсилювачі (FOPA – fiber optical parametric amplifiers) викликають останнім часом великий інтерес дослідників (5). Оскільки у недавніх експериментах були продемонстровані широка полоса пропускання та високий коефіцієнт підсилення. Теоретичний аналіз також вказує на те. Що параметричні підсилювачі володіють потенційно кращими чим інші підсилювачі шумовими характеристиками. Однак до цього часу параметричні підсилювачі не вийшли за межі дослідних центрів. Для розуміння принципів роботи  FOPA, факторів, що впливають на ефективність їх робот, а також труднощів, що виникають при їх створенні, розглянемо фізичну природу процесу параметричного підсилення у волокні.

Параметричне підсилення основане на використанні явища, яке отримало назву чотири хвильового змішування. Чотири хвильове змішування – один із нелінійних оптичних ефектів, який полягає в наступному: хвилі, що поширюються в нелінійному середовищі, крім лінійної поляризації середовища, пропорційної першій степені напруженості електричного поля Е, наводять поляризацію, пропорційну другій, третій і т. п степеням Е. процес параметричного підсилення пов'язаний із нелінійністю третього порядку. При взаємодії трьох хвиль із частотами ω1, ω2 та ω3 народжується четверта хвиля із частотою .

В випадку частково виродженого чотири хвильового змішування роль перших двох хвиль виконує хвиля накачки, третьою хвилею являється сигнальна хвиля, в процесі підсилення якої виникає, так звана, холоста хвиля. Рівняння у цьому випадку матиме вигляд: 

Схема параметричного підсилювача зображена на рис. 6.1. хвилі накачки та сигнала вводяться у високо нелінійне  волокно за допомогою волоконно-оптичного подовжувача. В волокні відбувається параметричне підсилення сигналу та збудження холостої хвилі, тому спектр випромінювання на виході підсилювача містить три компоненти: не поглинуту хвилю накачки, сигнал та холосту хвилю.


Рис. 6.1. Експериментальна схема волоконно-оптичного підсилювача.


Для отримання тільки підсиленого сигналу без інших складових спектра в даній схемі використано оптичний фільтр. Фізично механізм параметричного підсилення полягає в наступному. При одночасному поширенню по світловоді хвилі накачки Е (ωр) та сигнальної хвилі  Е (ωs) виникають биття на частоті ωр - ωs. В результаті утворюється біжуча фазова решітка змінного показника заломлення із частотою ωр - ωs. Друга хвиля накачки із Е (ωр) отримує фазову модуляцію із вказаною частотою. Внаслідок цього виникають дві бічні частоти . Одна із них - холоста хвиля, а інша сигнальна - ωs. Хвиля із частотою ωs додається із початково введеною в систему сигнальною хвилею,  тому сигнал на частоті ωs підсилюється. Це приводить до зростання глибини модуляції показника заломлення на частоті биття ωр - ωs і до подальшого підсилення холостої та сигнальної хвиль за рахунок енергообміну із хвилею накачки. Підсилення у протяжному волокні відбувається тільки при виконанні певних фазових співвідношень між хвилями Е (ωр), Е (ωs), Е (ωі) (5).

Коефіцієнт підсилення в параметричному процесі для сигнальної хвилі Gs рівний: , де ,  - потужності сигнальної хвилі на вході та виході світловода  довжиною L, g- коефіцієнт параметричного підсилення, .

Спектральна залежність коефіцієнта підсилення параметричного підсилювача приведена на рисунку 6.2.


Рис. 6.2. підсилення параметричного підсилювача із Рр=1,4 Вт,

L = 500м, λ0=1559 нм, λр=1560,7 нм.


Із графіка слідує, що крива містить два горби, що відповідають согласуванню фаз в результаті взаємної компенсації лінійної дисперсії та нелінійного набігу фази. В кожному конкретному процесі один горб відповідає підсиленню сигнальної хвилі. А інший підсиленню холостої хвилі.

Однією із позитивних рис параметричних підсилювачів є можливість створення підсилювачів із смугою підсилення в декілька сотень нанометрів і накачкою потужністю декілька Вт. В наш час отримані волоконні параметричні підсилювачі із шириною смуги підсилення від 200 до 400 нм. Ще однією характеристикою FOPA, котра обумовлює їх перевагу перед іншими видами підсилювачів, це шум-фактор. FOPA володіють шум-фактором близько 3 децибел. Однак при роботі  параметричного підсилювача в фазочутливому режимі, шум-фактор може досягати 0 Дб. Правда такий режим роботи достатньо складний у реалізації.  

Розділ 7. Основні області застосування квантових генераторів.


Поява лазерів зразу ж вплинула й продовжує впливати на різноманітні галузі науки й техніки, де стало можливим застосування лазерів для вирішення конкретних наукових і технічних завдань. Проведені дослідження підтвердили можливість значного поліпшення багатьох оптичних приладів і систем при використанні як джерела світла лазерів і привели до створення принципово нових пристроїв (підсилювачі яскравості, квантові пірометри, швидкодіючі оптичні схеми й ін.). На очах одного покоління відбулося формування нових наукових і технічних напрямків – голографії, нелінійної й інтегральної оптики, лазерних технологій, лазерної хімії, використання лазерів для керованого термоядерного синтезу й інших завдань енергетики. Нижче наведений  перелік застосувань лазерів у різних галузях науки й техніки, де унікальні властивості лазерного випромінювання забезпечили значний прогрес або привели до цілком нових наукових і технічних рішень.

Висока монохроматичність і когерентність лазерного  випромінювання забезпечують успішне застосування лазерів у спектроскопії, ініціюванні хімічних реакцій, у поділі ізотопів, у системах виміру лінійних й кутових швидкостей, у системах зв'язку й локації. Особливо потрібно виділити використання лазерів у голографії.

Висока щільність енергії й потужність лазерних пучків, можливість фокусування лазерного випромінювання в точку малих розмірів використовуються в лазерних системах термоядерного синтезу, у таких технологічних процесах, як лазерне різання, зварювання, свердління, поверхневе загартовування й обробка різних деталей. Ці ж властивості лазерного випромінювання забезпечують успішне застосування лазерів у військової техніці.

Зі створенням лазерів відбувся колосальний прогрес у розвитку нелінійної оптики, дослідженні й використанні таких явищ, як генерація гармонік, самофокусування світлових пучків, багато фотонне поглинання, різного типу розсіювання світла, викликаних полем лазерного випромінювання.

Лазери успішно використаються в медицині: у хірургії (у тому числі хірургії ока) і терапії різних захворювань, у біології, де фокусування лазерного променя в точку дозволяє діяти на окремі клітини або навіть на їх частини.

Більшість із перерахованих вище областей застосування лазерів являються самостійними та досить великими розділами науки або техніки й вимагають самостійного розгляду. Ціль наведеного тут короткого й неповного переліку застосувань лазерів - проілюструвати той величезний вплив, що зробила поява лазерів на розвиток науки й техніки, на життя сучасного суспільства.

В останні роки намітилася тенденція розширення застосування лазерів в ювелірної галузі. Найбільш широке поширення одержали верстати для обробки із твердотільними лазерами на алюміній-ітрієвому гранаті, випромінювання якого досить добре поглинається основними матеріалами ювелірної промисловості – дорогоцінними металами й каменями. Частина технологічних процесів лазерної обробки повністю відпрацьована й впроваджена в ювелірної галузі, деякі процеси й технології перебувають у стадії розробки, і можливо, незабаром можуть бути застосовані для обробки виробів ювелірної промисловості. Тому постараємося розглянути всі можливі варіанти застосування лазерів у технологічних процесах ювелірної промисловості. Одним з перших застосувань лазерів була пробивання отворів у годинникових каменях. Свердління отворів завжди було надзвичайно трудомісткою операцією. Сучасна лазерна технологія дозволяє отримувати отвори необхідної форми в каменях різних типів з високою швидкістю і якістю.

Одним з цікавих методів обробки дорогоцінних металів є маркування й гравірування. Сучасні лазери, оснащені комп'ютерним керуванням, дозволяють наносити на метал методом лазерного маркування й гравірування (модифікації поверхні під впливом лазерного випромінювання) практично  будь-яку графічну інформацію - малюнки, написи, вензелі, логотипи. Причому зображення можна наносити як у растровому, так й у контурному зображенні. Сучасне устаткування дозволяє переміщати лазерний промінь зі швидкістю більше двох метрів у хвилину й забезпечувати високу роздільну здатність. Також цікавим застосуванням лазерної технології гравірування є нанесення лазером різних логотипів, вензелів, товарних марок і знаків на елементи столового посуду, як з дорогоцінних металів, так і недорогоцінних металів, наприклад для позначення «нерж.» на лезах ножів.

Лазерна техніка отримала використання і у військовій галузі До теперішнього часу склалися основні напрямки, по яких іде впровадження лазерної техніки у військову справу. Цими напрямками є:

1. Лазерна локація (наземна, бортова, підводна).

2. Лазерний зв'язок.

3. Лазерні навігаційні системи.

4. Лазерна зброя.

5. Лазерні системи ПРО й ПКО.

Зараз, отримані такі параметри випромінювання лазерів, які здатні істотно підвищити тактико-технічні дані різних зразків військової апаратури.

Лазерною локацією називають область оптоелектроніки, що займається виявленням і визначенням місця розташування різних об'єктів за допомогою електромагнітних хвиль оптичного діапазону, випромінюваного лазерами. Об'єктами лазерної локації можуть бути танки, кораблі, ракети, супутники, промислові й військові споруди. Лазерна локація здійснюється активним методом. Оптична локація часто використовується, особливо в космосі (де немає поглинаючого впливу атмосфери) і під водою (де для ряду хвиль оптичного діапазону існують вікна прозорості). В основі лазерної локації, так само як і радіолокації, лежать три основні властивості електромагнітних хвиль:

1. Здатність відбиватися від об'єктів.

2. Здатність поширюватися прямолінійно. Використання вузько направленого  лазерного  променя дозволяє визначити напрямок на об'єкт (пеленг цілі).

3. Здатність лазерного випромінювання поширюватися з постійної швидкістю дає можливість визначати дальність до об'єкта.

Лазерна дальнометрія є однією з перших областей практичного застосування лазерів у військової техніці. Перші досвіди відносяться до 1961 року, а зараз лазерні далекоміри використаються й у наземній військовій техніці (артилерійські), і в авіації (далекоміри, висотоміри), і на флоті.

Основним прикладом роботи напівпровідникових лазерів у комп’ютерній техніці є магнітооптичний накопичувач (МО). МО накопичувач побудований на основі сполучення магнітного й оптичного принципу зберігання інформації. Запис інформації проводиться  при допомозі променя лазера й магнітного поля, а зчитування за допомогою одного тільки лазера. У процесі запису на МО-диск лазерний промінь нагріває певні точки на диску, і під впливом температури опірність зміні полярності, для нагрітої точки різко падає, що дозволяє магнітному полю змінити полярність точки. Після закінчення нагрівання опірність знову збільшується але полярність нагрітої точки залишається пропорційною до величини магнітного поля застосованої до неї в момент нагрівання.

Область застосування МО- дисків визначається його високими характеристиками по надійності, об'єму. Магнітооптичні диски необхідні для процесів, що вимагають великого дискового об'єму, це такі завдання, як САПР, обробка зображень, звуку та відеоінформації. Однак невелика  швидкість доступу до даних, не дає можливості застосовувати МО диски для завдань із критичною швидкістю.

Лазерні системи отримали застосування у голографії, за їх допомогою проводять запис та зберігання інформації. І перелік галузей використання лазерних систем зростає.

Висновки.


Останнім часом в Україні та за кордоном  були проведені значні дослідження в області квантової електроніки, були створені різноманітні лазери, які побудовані на нових матеріалах, створено прилади, які використовують лазери під час свого функціонування. Лазери тепер застосовуються у локації й у зв'язку, у космосі й на землі, у медицині й будівництві, в обчислювальній техніці й промисловості, у військовій техніці. З'явився новий науковий напрямок цілком і повністю зобов’язаний своїй появі цим пристроям – голографія.

Обмежений об'єм роботи не дозволив розглянути такий важливий аспект квантової електроніки, як лазерний термоядерний синтез, розглянути використання лазерного випромінювання для одержання термоядерної плазми. Не розглянуті такі важливі аспекти, як лазерний поділ ізотопів, лазерне одержання чистих речовин, лазерна хімія й багато чого іншого.

У підсумку слід відзначити, що лазери та мазери отримали широке використання у багатьох галузях промисловості, науці та побуті. І їх використання тільки зростатиме. Ще років 15 назад лазер був чимось недосяжним, побачити його можна було тільки по  телебаченню у науково-популярних передачах. Тепер лазери стали буденною річчю, звісно мова йде про прості лазери, лазерні указки тощо. Тому передбачити наскільки зросте використання цих пристроїв у майбутньому досить важко. Але можна бути впевненим у одному їх використання тільки  зростатиме.

Список використаної літератури.


1.                 Донина Н.М. Возникновение квантовой электроники. М.: Наука, 1974, 345 с.

2.                 Реди Дж. Промышленное применение лазеров. М.: Мир, 1991, 256 с.

3.                 Приезжев А. В., Тучин В. В., Шубочкин Л. П. Лазерная диагностика в биологии и медицине. М.: Наука, 1989,  278 с.

4.                 Тарасов Л. В. Лазеры действительность и надежды. М.: Наука, 1985, 178 с.

5.                 Воронин В. Г., Наний О. Е., Полиектова Н. А. Перспективы практического применения волоконно-оптических параметрических усилителей. Lightwave. Russian Edition. №1, 2007, ст. 51 – 56.

6.                 Василевский А. М. Оптическая электроника Л.: Энергоатомиздат, 1990, 344 с.

7.                 Верещагин И. К. Введение в оптоэлектронику М.: Высшая школа, 1991, 320 с.

8.                 Клышко Д. Н. Физические основы квантовой электроники М.: Наука, 1986, 287 с.

9.                 Кондиленко И. И. Физика лазеров. К.: Высшая школа. 1984. 256 с.

10.             Лисиця М. П., Халімонова І. М. Лазери в науці та техніці. К.: Наукова думка, 1986, 244 с.

11.            Химическая энциклопедия в 5 т. / под ред. И. Л. Кнунянца. – М.: Советская энциклопедия, 1990.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.