Меню
Поиск



рефераты скачать Усовершенствование системы водоподготовки производства этил-бензол-стирола

Количественное соотношение между теплоотдачей соприкосновением и теплоотдачей испарением зависит от конкретных условий. С увеличением температуры воды общие теплопотери возрастают, причем теплоотдача испарением увеличивается быстрее, чем теплоотдача соприкосновением. При снижении температуры воды до температуры воздуха по сухому термометру потери теплоты соприкосновением становятся равными нулю, а при дальнейшем снижении температуры воды поток теплоты qa будет направлен от воздуха к воде. Когда температура воды, снижаясь, приближается к температуре воздуха по влажному термометру t, тогда потери теплоты водой в результате испарения qb остаются положительными; в то же время отрицательные потери теплоты соприкосновением возрастают по абсолютной величине. При снижении температуры воды до температуры воздуха по влажному термометру отрицательные теплопотери соприкосновением qa становятся равными положительным потерям теплоты при испарении qb. Наступает равновесное динамическое состояние, при котором результирующая составляющая теплоотдачи равна нулю, и вода не снижает свою температуру.

Следовательно, вода может быть охлаждена до температуры более низкой, чем начальная температура охлаждающего ее воздуха (по сухому термометру); это свойственно только испарительному охлаждению. Теоретическим пределом охлаждения воды является температура воздуха по влажному термометру.

В общем виде уравнение теплового баланса в испарительных охладителях имеет вид

(5)

 

где с — удельная плотность воды, кг/м3;

W = pW’ — массовый расход воды, кг/с;

r — удельная плотность воды, кг/м3;

W’— объемный расход воды, м3/с;

Dt — разница температур горячей и охлажденной воды, °С;

Т — рассматриваемый период, сут;

R — приток теплоты от солнечной радиации, Дж.

Процессы, происходящие при испарительном охлаждении, более сложные, чем теплообмен через твердую стенку. Последний имеет место в охладителях, охлажде­ние в которых происходит без контакта охлаждаемой воды с атмосферным воздухом — через стены теплообменников (радиаторов). Такой теплообмен называется конвективным. Он происходит при одновременном действии конвекции и теплопроводности. Конвективный теплообмен зависит от разнообразных факторов, в том числе: режима движения жидкости и воздуха, свободного или принудительного их движения, плотности, вязкости, коэффициента теплопроводности и температуропроводности жидкости и воздуха, формы и размера участвующей в конвективном теплообмене поверхности.

Удельное количество теплоты, переданной через стенку радиатора, определяется формулой Ньютона

(6)

 

где qр — удельное количество теплоты, кДж/(м2/ч);

aр — общий ко­эффициент теплопередачи от воды к воздуху через стенку радиатора, кДж/(м2×ч×°С)

t — температура воды, проходящей через радиатор, °С;

q— температура воздуха, обтекающего радиатор, °С.

Коэффициент aр определяют по экспериментальным данным [4].


1.5. Требования к качеству охлаждающей воды оборотных систем водоснабжения


Требования к качеству охлаждающей воды определяются условиями ее использования в конкретных техно­логических схемах с учетом специфики производства. Тем не менее, все они сводятся к обеспечению высоко­эффективной работы теплообменного оборудования, инженерных сооружений и коммуникаций, входящих в состав оборотного комплекса. Для успешной реализации этой задачи необходимо осуществлять проведение таких водных режимов, при которых на поверхности охлаждающих элементов и в самой системе практически не должно возникать активных коррозионных процессов и образования каких-либо солевых, механических и биологи­ческих отложений. В противном случае нарушаются нормальные условия теплопередачи, вызывающие снижение производительности основных технологических потоков и оборудования, а также качества вырабатываемой продукции; увеличиваются энергетические затраты цирку­ляционных насосных станций на преодоление дополнительных гидравлических сопротивлений в охлаждающих контурах; резко ухудшаются эксплуатационные характеристики оборотных систем; происходит разрушение конструкционных материалов.

Водный режим оборотных систем существенно отличается от режима прямоточных систем. Многократный нагрев оборотной воды и ее последующее охлаждение в градирнях и брызгальных бассейнах приводит к потерям равновесной углекислоты и отложению на поверхно­сти теплообменников и холодильников главным образом кальциевых карбонатных отложений в соответствии с реакцией

Растворимость карбоната магния значительно боль­ше, чем карбоната кальция, и поэтому MgCO3 входит в состав накипи в незначительном количестве в результате соосаждения с СаСО3. Однако при обработке доба­вочной воды известью с целью ее умягчения при значениях рН > 10 в результате гидролиза образуется малорастворимое соединение — гидроокись магния:

Природные воды, используемые в схемах технического водоснабжения, в которых не происходит выпадения солей карбонатной жесткости при температуре 40-60°С принято называть термостабильными. Для оценки термостабильности оборотной воды применяют шестибальную шкалу.

Практически карбонатная жесткость термостабильных вод не превосходит 2—3 мг×экв/л для оборотного во­доснабжения и 4 мг×экв/л — для прямоточного.

Ограниченно термостабильные — природные воды, вызывающие карбонатные отложения только по мере на­копления солей кальция в результате упаривания, имеют карбонатную жесткость не более 4 мг×экв/л.

Нетермостабильные — воды с карбонатной жесткостью свыше 4 мг×экв/л, у которых при относительно небольшом нагревании сразу же наблюдается выпадение СаСО3.

При работе оборотных систем с ограниченными добавками подпиточной воды, а, следовательно, при больших коэффициентах концентрирования солей содержание сульфата кальция достигает предела растворимости в циркуляционной воде, и он в зависимости от температуры воды и наличия в ней определенных примесей может выпадать из раствора в виде дигидрата CaSO4×2H2O и ангидрита CaSO4.

Скорость отложения карбоната кальция и других солей не должна превышать соответствующих пределов, поэтому требуется ограничить карбонатную жесткость и содержание сульфатов в виде расходуемой на подпит­ку охлаждающих оборотных систем. Кроме того, в оборотной и добавочной воде лимитируется концентрация взвешенных веществ, так как взвешенные вещества могут формировать в теплообменниках слой отложений, снижая, таким образом, коэффициент теплопередачи. При скорости движения жидкости 1 м/с и концентрациях грубодиспергированных примесей в оборотной воде 150мг/л и 1000 мг/л коэффициент теплопередачи снижается со­ответственно на 20 и 35 %. В свою очередь, увеличение скорости движения воды в трубках теплообменных аппаратов приводит к уменьшению интенсивности образования механических отложений. По некоторым данным, минимальная самоочищающая скорость движения жид­кости, обеспечивающая вынос и транспортирование механических примесей (песка, накипи и других взвесей) крупностью 0,1-4мм из охлаждаемых элементов, составляет 0,01-0,5м/с. При наличии в оборотной воде окалины скорость циркуляционного потока должна быть не менее 0,8-1 м/с.

Источником загрязнений оборотной воды взвешенными веществами являются неосветленные воды поверхностных водоемов, вторичные продукты деструкции коррозионных и карбонатных отложений, биообрастаний, а также пыль минерального и органического происхождения, проникающая в охладители из атмосферного воздуха. Концентрация пыли в воздухе зависит от регионального фактора, степени загрязненности воздуха выбросами промышленных предприятий, почвенно-климатических условий, скорости ветра и т д. Концентрацию взвешенных веществ, вносимых в оборотную воду из воздуха, возможно, прогнозировать  исходя из формулы

(7)

 

где DС — прирост концентрации взвешенных веществ в оборотной воде при прохождении ее через градирню, г/м3,

Своз — запыленность атмосферного воздуха, мг/м3;

К — эмпирический коэффициент, изменяющийся в пределах 0,93—1,45 при плотности орошения от 10 до 6 м3/(м2×ч).

Взвешенные вещества, например, такие, как песок, осаждаются в пазухах холодильников, забивают трубную систему теплообменников, отлагаются на отдельных участках коммуникаций, а мелкодисперсные включения, входящие в состав карбонатных и сульфатных отложений, вызывают повышение их прочностных характеристик.

Итак, допустимая концентрация взвешенных веществ в циркуляционной воде зависит от гидравлической крупности частиц и от скорости движения воды в теплообменных аппаратах. Исходя из требований по содержанию взвешенных веществ, предъявляемых к качеству оборотной воды, можно определить их максимально допустимую концентрацию в подпиточной воде и таким образом установить оптимальное количество механических примесей, подлежащих выводу из системы.

Накопление взвешенных веществ в холодильниках и коммуникациях наблюдается также при развитии биологических обрастаний, которые аккумулируют механические примеси, находящиеся в оборотной воде.

В состав биологических обрастаний входят разнообразные бактерии, водоросли, грибы, простейшие и более сложные организмы животного происхождения, принадлежащие к различным систематическим группам. На развитие биоценоза существенное влияние оказывают физико-химические и бактериологические показатели качества воды источников водоснабжения, погодно-климатические условия, сезонность, характер производства, технологическая схема охлаждения и обработки оборотной воды и т. д. С увеличением содержания в оборотной воде органических соединений, растворенного кислорода, а также биогенных элементов интенсивность биообрастаний резко возрастает.

В закрытых теплообменных аппаратах и коммуника­циях в биоценоз обрастаний входят слизеобразующие и нитчатые формы, а также серо- и железобактерии.

К серобактериям относятся бесцветные нитчатые, крупные овальные и круглые бактерии, спириллы, для развития которых необходимы сероводород и кислород. Серобактерии в процессе жизнедеятельности окисляют H2S до S и при недостатке сероводорода выделяют серную кислоту, которая вызывает сульфатную коррозию, приводящую к разрушению деревянных и железобетонных конструкций.

Железобактерии извлекают из воды растворенное закисное железо и окисляют его до образования малорастворимого гидрата железа, забивающего трубопроводы. Вид железобактерий, преобладающих в системах оборотного водоснабжения, в большей степени зависит от содержания в воде органических веществ. При перманганатной окисляемости до 5—7 мг/л и значениях рН, близких к нейтральному в железистых водах, в основном развиваются одноклеточные железобактерии — галлионелла. При окисляемости порядка 17 мг/л в обрастаниях доминирующее место принадлежит нитчатым бактериям — лептотрикс. При наличии в воде безазотистых органических веществ основную массу биообрастаний со­ставляет кладотрикс.

Роль железобактерий в биокоррозии металлов окончательно не изучена, тем не менее под обрастаниями железобактерий на поверхности металла встречаются каверны диаметром до 15 мм и глубиной до 7 мм.

В анаэробных условиях, имеющих место в плотных густых обрастаниях, развиваются сульфатредуцирующие бактерии. Сульфатвосстанавливающие бактерии окисляют органические вещества кислородом сульфатов и восстанавливаемая при этом сера (до H2S) превращается в малорастворимые сульфиды железа. Отлагающиеся на внутренней поверхности трубопроводов характерные черные хлопья разносятся потоком циркуляционной воды по всему тракту.

Аналогичная ситуация складывается при изменении условий существования либо направленном воздействии приводящих к гибели и отмиранию биообрастаний, вследствие чего также происходит образование сероводорода и усиление электрохимической коррозии металла.

При развитии обрастаний из моллюсков, ракообразных и других организмов, строящих известковые раковины, возможно отложение карбонатов на стенках труб и внутри холодильников.

В теплообменных аппаратах открытого типа и охладителях в формировании биоценоза принимают участие бактерии, зеленые и сине-зеленые водоросли, простейшие одноклеточные организмы, черви, коловратки и грибы. Последние вместе с илообразующими бактериями раз­рушают деревянные конструкции градирен.

Серьезные помехи при эксплуатации открытых систем оборотного водоснабжения создают водоросли. Они оказывают значительное влияние на химический состав оборотной воды, так как в процессе фотосинтеза способны поглощать растворенную в воде углекислоту и выделять кислород. В связи с этим в охлаждающих системах в течение суток наблюдаются циклические колебания рН, стабильности и коррозионной активности оборотной воды. Кроме того, водоросли могут являться питательной средой для других представителей биоценоза, стимулируя, таким образом, их дальнейшее развитие и рост. При обрастании водорослями оросителей и водоуловителей охлаждающая способность градирен снижается более чем на 15 %.

Зарастание охлаждающих водоемов растительностью приводит к сокращению поверхности испарения и повы­шению температуры оборотной воды, поступающей в теплообменники.

Таким образом, развивающиеся на теплообменных поверхностях аппаратов, в коммуникациях и охладителях биологические обрастания снижают эффективность работы оборотных систем технического водоснабжения, вызывают биологическую коррозию металлов, оказыва­ют разрушающее воздействие на деревянные и железобетонные конструкции, сокращая срок их эксплуатации. Поэтому величина скорости роста биологических обрастаний теплообменных аппаратов так же, как и других сооружений оборотных систем, должна быть ограничена допустимой величиной. Для удовлетворения этих требований необходимо лимитировать содержание органических веществ и биогенных соединений, как в оборотной, так и в подпитывающей воде.

Охлаждающая вода не должна вызывать коррозию конструкционных материалов трубопроводов, теплообменников и отдельных сооружений, элементов градирен, выполненных из углеродистых сталей других материалов.

По внешним признакам различают общую и местную формы коррозионных повреждений. Общая коррозия носит равномерный характер и распространяется по всей поверхности металла. Местная коррозия вызывает разрушение лишь на отдельных участках металла и может быть язвенной (питтинговой), точечной и в виде пятен.

Одной из причин коррозии металлов является их термодинамическая неустойчивость в различных средах, в том числе и водных. В процессе коррозии металлы переходят в оксиды, которые термодинамически более устойчивы по сравнению с чистыми металлами. Коррозионные процессы не могут быть полностью предотвращены, поэтому для обеспечения надежной работы оборотных систем необходимо, чтобы она протекала равномерно с невысокой интенсивностью. Такие условия можно создать, совместно решая задачи рационального аппаратурного оформления охлаждающих систем и выбора соответствующих конструкционных материалов.

В процессе эксплуатации охлаждающих систем разрушение металла происходит в основном под действием электрохимической коррозии, что приводит к переходу значительных количеств продуктов коррозии в циркуляционную воду. На интенсивность коррозии существенное влияние оказывают величина рН оборотной воды и содержание в ней растворенного кислорода. В щелочной среде при значениях рН > 8 коррозия углеродистой стали уменьшается вследствие образования на поверхности металла плотной нерастворимой пленки гидроокиси. При пониженных значениях рН в присутствии свободной агрессивной углекислоты происходит растворение защитных карбонатных и окисных пленок. Экспериментально установлено, что скорость коррозии малоуглеродистой стали, являющейся основным конструкционным материалом теплообменного оборудования, усиливается с ростом концентрации сульфатов и хлоридов в оборотной воде. При увеличении содержания сульфатов с 50 до 2500 мг/л скорость коррозии стали увеличивается в два раза. Повышение концентрации хлоридов в присутствии небольших количеств сероводорода, аммиака, нитритов приводит к разрушению латунных конденсаторных трубок в результате их обесцинкования.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.