Меню
Поиск



рефераты скачать Решение задач симплекс-методом

3-я итерация

cj

p0

x0

x1

х2

х3

х4

х5

х6

х7

0

х4

0.6

0.0

0.0

0.0

1.0

-0.1

-0.6

0.4

8

х1

26.3

1.0

0.0

0.0

0.0

-0.2

-0.3

0.4

15

х2

24.3

0.0

1.0

0.0

0.0

0.1

-0.3

0.0

10

х3

3.6

0.0

0.0

1.0

0.0

-0.1

0.4

-0.6

Zj - Cj

537.2

0.0

0.0

0.0

0.0

-1.7

-1.2

-1.9

Подставив значения неизвестных в исходные неравенства, получаем:

1 * 26,3 + 1 * 24,3 + 0 * 3,6 ≥ 50

4 * 26,3 + 1 * 24,3 + 3 * 3,6 ≥ 140

1 * 26,3 + 4 * 24,3 + 1 * 3,6 ≥ 127

0 * 26,3 + 3 * 24,3 + 2 * 3,6 ≥ 80

Стоимость сырья при этом будет минимальной и составит:

F = 8 * 26,3 + 12 * 24,3 + 12 * 3,6 = 537,2


ЗАДАЧА 3


Составить оптимальный план перевозок пищевых продуктов от 4-х по­ставщиков к 6-ти потребителям. Поставщики (П),  потребители (М), объемы вы­воза и завоза, кратчайшие расстояния между пунктами вывоза и завоз приведены в таблице.

Поставщики

Потребители

Объемы вывоза, т

М1

М2

М3

М4

М5

М6

П1

24

30

42

15

39

21

144

П2

9

24

30

33

27

29

148

П3

24

22

20

45

21

23

76

П4

11

36

27

40

30

8

132

Объемы завоза, т

92

84

80

112

96

36

 


Решение задачи начинается с распределения у имеющихся у поставщиков объемов вывоза между потребителями с учетом объемов завоза. Для первоначального распределения используются способы: северо-западного угла, наименьшего элемента по строке, наименьшего элемента по столбцу, наименьшего элемента матрицы.

Способ северо-западного угла состоит в том, что распре­деление объемов вывоза производится, начиная с верхнего лево­го угла таблицы и кончая нижним углом ее. Результаты распреде­ления показаны в таблице.

Поставщики и объемы вывоза, т

Потребители и объемы завоза

 

Потенциалы строк

М1

М2

М3

М4

М5

М6

92

84

80

112

96

36

П1

144

24

30

42

15

39

21

0

92

52

 

 

 


П2

148

9

24

30

33

27

29

-6

 

32

80

36

 

 

П3

76

24

22

20

45

21

23

6

 

 


76

0

 

П4

132

11

36

27

40

30

8

15

 

 

 

 

96

36

Потенциалы столбцов

24

30

36

39

15

-7

 

Проверка плана на оптимальность. Когда исходный план получен и рассчитана соответствующая ему суммарная тонно-километровая работа, определяют, является ли этот план оптимальным. Для проверки плана на оптимальность применяется метод потенциалов.

Сущность метода потенциалов состоит в том, что для каж­дой строки и каждого столбца таблицы (матрицы) определяют спе­циальные числа, называемые потенциалами. С помощью этих потен­циалов можно установить, нужно ли заполнять свободную клетку матрицы или ее нужно оставить незаполненной.

Для решения задач методом потенциалов исходный план дол­жен иметь количество заполненных клеток m + n – 1 (m - число строк, n - число столбцов). Если план не отвечает этим требованиям, то не для всех строк и столбцов можно рассчи­тать потенциалы, а без них нельзя проверить план на оптималь­ность.

Потенциалы строк и столбцов определяются по заполненным клеткам, находящимся на их пересечении.

Элемент заполненной клетки должен равняться сумме потен­циалов строки и столбца, на пересечении которых находится эта заполненная клетка.

Для начала вычислений первый потенциал для строки или столбца принимается условно равным нулю, все остальные потенциалы определяются с помощью элементов заполненных клеток.

Обозначив потенциалы строк ui, потенциалы столбцов Vj, элементы заполнения клеток , можно записать порядок расчета потенциалов для общего случая.

Из основного требования  = ui + Vj вытекает:

ui =  - Vj;       Vj =  - ui

Из этих выражений видно, что для расчета потенциала строки необходимо иметь заполненную клетку, в столбце которой потенциал уже определен, а для расчета потенциала столбца нужна заполненная клетка, имеющая потенциал в строке.

Потенциалы показаны в таблице.

После того, как по строкам и столбцам определены потенциа­лы, с их помощью выясняется, является ли план оптимальным, и если нет, то как его можно улучшить. С этой целью для каждой свободной клетки вычисляется сумма потенциалов строк и столбцов, на пересечении которых находится эта клетка.

Сравнение суммы потенциалов с величиной элемента в свобод­ных клетках позволяет определить, нужно ли заполнять эту клетку или ее нужно оставить свободной.

При решении задач на минимум функционала (в нашем случае на минимум тонно-километровой работы) не заполняются те свобод­ные клетки, в которых сумма потенциалов меньше величины эле­мента (в нашем случае - расстояния).

Иными словами, если характеристика, значение которой равно разности  - (ui + Vj), положительная, то свободная мет­ка не заполняется при решении задачи на минимум функции.

Свободные клетки, имеющие нулевое значение характеристики, показывают на то, что их заполнение приведет к перераспределению поставок, но объем работ (значение функционала) останется неиз­менным.

Суммы потенциалов, значения элементов и характеристики для незаполненных клеток приведены в таблице.

Шифры клеток

П1-М3

П1-М4

П1-М5

П1-M6

П2-М1

П2-М5

П2-М6

П3-М1

П3-М2

П3-М3

П3-М6

П4-М1

П4-М2

П4-М3

П4-М4

Суммы потенциалов

36

39

15

-7

18

9

-13

30

36

42

-1

39

45

51

54

Значение элементов

42

15

39

21

9

27

29

24

22

20

23

11

36

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.