Меню
Поиск



рефераты скачать Проектирование редуктора

Таблица 7.1 Габариты подшипников.


Условное

Обозначение подшипника

d, мм

D, мм

В, мм

С, кН

Со, кН

307

35

80

21

33,2

18

310

50

110

27

65,8

36


Принимаем для смазки подшипников пластичный смазочный материал. Для предотвращения вытекания смазки внутрь корпуса и вымывания пластичного смазочного материала жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца. Их ширина определяет размер у=8÷12мм.

Принимаю у=8 мм.

Измерением находим расстояние на ведущем валу l1=43,5 мм и на ведомом l2=48,5 мм

Принимаю окончательно l1= l2=50 мм

Измерением устанавливаем расстояние, определяющие положение шкива, относительно ближайшей опоры ведущего вала l3, принимаю окончательно l3=65 мм.

8. Проверка долговечности подшипников


Ведущий вал

Выписываю Ft=2456,96 кВт, Fr=1134,9 Н∙м, Fa=387 Н∙м, Fb=1340,13 Н, l1=l2=50 мм, l3=65 мм, d1=79 мм, d2=281 мм из проделанных расчетов.

 


8.1. Реакции опор Rx2 в плоскости Xz.

                       Rx1=(1/2l1)(Fb(l3 + 2l1)+Ft·l1),

 z Rx2=(1/2l1)(-Fb·l3 + Ft · l1),

 x Проверка: Rx1 +Rx2- Fb-Ft = 0,

                                      Rx1

                                   _                                          Fr  _

                                  _  1                                                                  _ 2

 Fa

Fb Ry1                                            Ry2                                     

 Ft


                                                                                         


                    l3                               l1                                   l1

 

Rx1=(1/2·0,05)(1340,13(0,065+2·0,05)+2456,96·0,05)=3439,69 Н

Rx2=(1/2·0,05)(-1340·0,065 + 2456,96 · 0,05)= 357,48 Н

Проверка: 3439,69 +357,48- 1340-2456,96=0

3797,17-3797,17=0

0=0

В вертикальной плоскости Yz силу давления на вал от ременной передачи не учитываю, т.к. ременная передача по условию проектирования находится в горизонтальной плоскости и вертикальная составляющая от Fb будет незначительной.

В плоскости Yz

Ry1 = 1/2l1 (Fr·l1+ Fa·d1/2),

Ry2 = 1/2l1 (Fr·l1- Fa·d1/2),

Проверка: -Ry1+Fr-Ry2=0,

Ry1 = 1/2·0,05(1134,9·0,05+ 387·0,07/2)= 702,9 Н

Ry2 = 1/2·0,05(1134,9·0,05- 387·0,07/2) =432 Н

Проверка: -702,9+1134,9-432=0

 1134,9-1134,9=0

 0=0


8.2. Суммарные реакции:


,

,

=3510,77 Н

=560,73 Н


8.3.Определение эквивалентной нагрузки


Pэ = (x·V·Pr1+y·Pa) ·Kv·Kt ,

где Pa=Fa=310 Н·м;

V =1 - вращается внутреннее кольцо;

Kv = 1 - коэффициент безопасности для приводов ленточных конвейеров.

(Табл. 9.19. Л1.с.214.).

Отношение Pa/Cо – эта величина должна соответствовать,

согласно Табл. 9.18. Л1.с212.

Pa/Cо=387/18000=0,0172 ≤ e=0,22

Отношение Pa/Pr1 -> e           

Pa/Pr1=387/3510,77=0,11245; е=0,3; x=0,56; y=1,45 ; табл. 9.18.

Pэ = (0,56·1·3510,77+1,45·387) ·1·1=1993,2296 Н


8.4. Долговечность подшипника


L = (C·103 / Рэ)3 млн. об. (8.2)

L = (33,2·103 / 1993,2296)3=4621,06 млн. об.

Расчетная долговечность подшипника

Lh = L·106 / 60 · n2, (8.3.)       

где n2 –частота вращения ведущего вала, об/мин;

Lh – Расчетная долговечность, млн. об.;

L - долговечность подшипника, млн. об.

Lh = 4621,06·106 / 60·315=244,5·103 млн. об.>10000 млн. об.

Ведомый вал

                                                                                                     Rу4

                    --                                                                        --

      Rx3      --                                                                        -- 4


                        Ry3                                                       Rx4

                                                                      

                                                                                                        

                                     l2                                l2

 у


                     z


 x


8.5. Реакции опор в плоскости xZ


Rx3 = Rx4 = Ft/2,

Rx3 = Rx4 =2456,96/2=1228,48 Н

В плоскости yZ:

Ry3 = 1/2l2(-Fr·l2 + Fa· d2/2),

Ry4 = 1/2l2(Fr·l2 + Fa· d2/2),

Проверка: -Ry4 – Fr + Ry4 = 0,

Ry3 = (1/2·0,05)(-1134,9·0,05+387·0,25/2)=-86,2 Н

Ry4 = (1/2·0,05)(1134,9·0,05+387·0,25/2)= 1053,7 Н

Проверка: -Ry3 - Fr + Ry4=0

 86,2-1134,9+1053,7=0

 1134,9-1134,9=0

 0=0


8.6. Суммарные реакции:


,

,

=1105,66 Н

=1361 Н

Pэ = (x·V·Pr4+y·Pa) ·Kv·Kt ,

Отношение

Pa/Cо=387/36000=0,0086 ≤ e=0,22

Отношение Pa/Pr4 -> e           

Pa/Pr4=387/1361=0,227 е=0,38; x=0,56; y=1,15; табл. 9.18.

Pэ = (0,56·1·1361+1,15·387) ·1·1=1118,66 Н

8.7. Определение расчетной долговечности:


L = (C·103 / Рэ)3 млн. об.

L = (65,8·103 / 1118,66)3=203,508·103 млн. об.

Расчетная долговечность

Lh = L·106 / 60 ·n3,

где n3 - об/мин. частота вращения ведомого вала.

Lh = 203,508·106 / 60 ·88= 38543,2 млн. об.

9. Проверка прочности шпоночных соединений

 

9.1. Подбор шпонок по ГОСТ 23360 – 78 (табл. 9.1, ГОСТ 24071 – 80 табл.9.2.)


Материал шпонок - сталь 45 нормализованная.

Для ведущего вала редуктора:

b×h=8×7 мм; t1=4 мм; t2=3,3 мм; d=30 мм; L=53 мм; фаска 0,25×45°.

Для ведомого вала редуктора под муфтой:

b×h=14×9 мм; t1=5,5 мм; t2=3,8 мм; d=45 мм; L=65 мм; фаска 0,3×45°.

Для ведомого вала редуктора под колесом:

b×h=16×10 мм; t1=6 мм; t2=3,8 мм; d=55 мм; L=40 мм; фаска 0,35×45°.


9.2. Определение напряжения смятия и условия прочности


Gсм = 2Т /d(h-t1)(L-b) ≤ {Gсм}, (9.1)

где Gсм - напряжения смятия и условия прочности, мПа;

Т - вращающий момент на валу, Н·м;

d - диаметр вала, мм;

h - высота шпонки, мм;

L – длинна шпонки, мм;

в – ширина шпонки, мм.

Допускаемое напряжение при стальной ступице - {Gсм} = 100 ÷ 120МПа;

при чугунной - {Gсм} = 50 ÷ 70 МПа.

Принимаю: для чугунной ступицы {Gсм}=70 МПа;

 для стальной ступицы {Gсм}=120 МПа.

Ведущий вал:

b×h=8×7 мм; t1=4 мм; t2=3,3 мм; d=30 мм; L=53 мм; фаска 0,25×45°

(материал шкива – чугун марки СЧ-15).

Gсм = 2Т1/d (h-t1)(L-b) , (9.2)

Gсм = 2·78,5·103/30(7-4)(53-8)=157·103/4050=38,76 МПа<{Gсм}

38,76 МПа<70 МПа

Условие выполнено


9.3. Ведомый вал


b×h=14×9 мм; t1=5,5 мм; t2=3,8 мм; d=45 мм; L=65 мм; фаска 0,3×45°.

Проверка шпонки под муфтой:

Gсм = 2Т3/d (h-t1)(L-b); (9.3)

(материал полумуфты СЧ-20).

Gсм = 2·259,553·103/45 (9-5,5)(65-14)=519,106·103 /8032,5=64,62 МПа<{Gсм}

64,62 МПа<70 МПа

Условие выполнено


9.4. Проверка шпонки под зубчатым колесом:


b×h=16×10 мм; t1=6 мм; t2=3,8 мм; d=55 мм; L=40 мм; фаска 0,35×45°.

Gсм=2Т2/d (h-t1)(L-b) <{Gсм}, (9.4)

(зубчатое колесо из стали)

Gсм=2·367,42·103/55 (10-6)(40-16)=529,7·103/5280=100,32 МПа< {Gсм}

100,32 МПа< 120 МПа

Условие выполнено

10. Проверочный расчет ведомого вала


10.1. Проверочный (уточненный) расчет состоит в определении коэффициентов запаса прочности S для опасных сечений и сравнения их с требуемыми (допускаемыми) значениями {S}

Соблюдение прочности при S≥ {S}=25 Л.3 с. 161

Согласно сборочному чертежу составил расчетную схему и построить эпюры Mx, My, Mk,Ft,Fa Ry4

         Ry3                                                                       С


 Rx3


 L3

А Fr             



L2

 В

 Rx4


L2


 +




МyВ




MxBслева

 +




 MxB справа


Mк =Т2





+







 

Горизонтальная

плоскость







My






Mx


Mk

МуА=0,

Му слева =Му справа =Rx3L2,

MyC=0.

Му слева =Му справа =1105,5·0,05 =55,275 Н·м

Вертикальная плоскость

MxA=0,

MxB слева= Ry3L2,

MxB справа= Ry4 L2,

MxC=0,

Mк=T2.

MxB слева=86,2 ·0,05=-0,945 Н·м

MxB справа=1053,7·0,05=39,695 Н·м

Mк=T2=367,42Н·м


10.2.Согласно расчетов построения эпюр опасным является сечение под зубчатым колесом


Материал вала - сталь 45 нормализованная (Табл. 3.3. Л1 с. 34

Gв = 570 МПа)

Предел выносливости при симметричном цикле изгиба

G-1 ≈ 0,43Gв, (10.1.)

G-1 ≈ 0,43·570=245,1 МПа


10.3. Определяю предел выносливости при симметричном цикле касательных


τ-1 ≈ 0,58G-1, (10.2.)

Нормальное напряжение от изгиба изменяется по симметричному циклу, а касательные от кручения – по нулевому (пульсирующему)

τ-1 ≈ 0,58·245,1=142,158 МПа

Диаметр вала под зубчатым колесом

d =55 мм

Концентрация напряжений обусловлена наличием шпоночной канавки согласно Табл. 10.1. Л.1 КG ≈1,6; Kτ≈1,5;

Табл. 10.1. Л.1 εG ≈0,82; ετ≈0,7;

Л1. с 313 φG≈0,15 ; φτ≈0,1.

Крутящий момент Т2=264,85 H·м


10.4. Определение суммарного изгибающего момента:


Ми =,

Ми ===68,05 Н·м

Момент сопротивления кручению (вал под колесом d =55 мм, b =16 мм, t1=6 мм; табл. 10.5. )

W к нетто =πd3 / 16 – в·t1(d-t1)2 / 2d, (10.3.)

где Wк нетто – момент сопротивления кручения, мм;

d – диаметр вала, мм.

W к нетто =3,14·553 / 16 – 16·6(55-6)2 / 2·55=30555,7 мм3

Момент сопротивления изгибу

W к нетто = πd3/ 32-в·t1(d-t1)2 /2d,

W к нетто = 3,14·553/ 32-16·6(55-6)2 /2·55=14230 мм3


10.5. Определение амплитуды и среднего напряжения цикла касательных напряжений

 

τv = τm= T2/2W к нетто, (10.4.)

τv = 367,42·103/2·30555,7=4,33 МПа

Амплитуда нормальных напряжений изгиба

Gv=Ми / W к нетто, (10.5.)

Gv=68,05·103 /14,23·103=4,78МПа

Среднее напряжение Gm = 0

10.6. Определение коэффициента запаса прочности нормальным напряжением


, (10.6)

=26,3


10.7. Определение коэффициента запаса прочности по касательным напряжениям


, (10.7)

=14,63


10.8. Определение результирующего коэффициента запаса прочности для сечения под зубчатым колесом


>[S]=2,5,                                                                 (10.8)

===12,787>2,5

Условие выполнено

11. Подбор и проверочный расчет муфты


Для соединения ведомого вала редуктора с валом барабана ленточного конвейера выбираем муфту упругую втулочно-пальцевую по ГОСТ 21424-75-приложение

Произведем проверочный расчет резиновых втулок.


11.1. Расчетный момент


Тр=kpТ3,

где Тр - Расчетный момент, Н·м;

kp=1,25…1,5-коэфициент режима работы для ленточных транспортеров.

Т3-момент передаваемый муфтой, Н·м.

Тр=1,3·259,553=337 Н·м


11.2. По ГОСТ 21424-75 выбираю муфту с [T]=500 Н·м; d=45 мм;

D=170 мм; dn=18 мм; Св=36


11.3. Проверка резиновых втулок на смятие поверхностей их сопряжения с пальцами


Gсм= Ft/Sсм= Ft/dn Св≤[Gсм],

где Ft- окружная сила, передаваемая одним пальцем, Н.

Ft=Tр/ 0,5D·z,

где допускаемое напряжение смятия резины [Gсм]=2,0 МПа.

Ft=337/ 0,5·170·10-3·6=660,8 Н

Gсм=660,8/18·36=1,02 МПа

Gсм≤[Gсм]

1,02 МПа≤2 МПа

12. Посадки зубчатого колеса и подшипников

 

Посадки зубчатого колеса на вал H7/р6 по ГОСТ 25347-82.

Шейки валов под подшипники выполняю с отклонением вала k6.

Отклонения отверстий в корпусе под наружные кольца по H7.

Муфты при тяжелых ударных нагрузках H7.

Распорные кольца, сальники H8.

Шкивы и звездочки H7.

13. Смазка редуктора

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колеса примерно на 10 мм. Объем масляной ванны V определяю из расчета 0,25 дм3 масла на 1кВт передаваемой мощности.

V = 0,25·N, (13.1)

где V -объем масляной ванны, дм3;

N -передаваемая мощность двигателя, кВт.

V = 0,25·3=0,75 дм3

При контактной нагрузке до 600 МПа при υ=1,155 м/с кинематическая вязкость смазывающего материала 34·10-3 и подходит индустриальное масло марки И-40А

Камеры подшипников заполняю пластичным смазочным материалом Литол-24 ГОСТ 21150-75; температура эксплуатации от -40 до +130°С; Температура каплепадения 180°С.

14. Сборка редуктора


Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской.

Сборку производят в соответствии со сборочным чертежом редуктора, начиная с узлов валов:

Ø                на ведущий вал насаживают мазеудерживающие кольца и шарикоподшипники, предварительно нагретые в масле до 80-1000С;

Ø                 в ведомый вал закладывают шпонку BxHxL=16х10х40 и напрессовывают зубчатое колесо до упора в бурт вала;

Ø                затем надевают распорную втулку, мазеудерживающие кольца и устанавливают шарикоподшипники, предварительно нагретые в масле.

Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу.

После этого на ведомый вал надевают распорное кольцо, в подшипниковые камеры закладывают пластичную смазку, ставят крышки подшипников с комплектом металлических прокладок для регулировки.

Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами.

Далее на конец ведомого вала в шпоночную канавку закладывают шпонку 14х9х65, устанавливают полумуфту.

Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель.

Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона; закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.

Список литературы


1.                 Анурьев В.И. Справочник конструктора - машиностроителя Т.1 М. «Машиностроения» 1980г.

2.                 Чернилевский Д.В. Курсовое проектирование деталей машин и механизмов М. «Высшая школа» 1980г.

3.                 Чернавский С.А., Боков К.Н., Чернин Н.М. и др. Курсовое проектирование деталей машин. М. «Машиностроения» 1988г.

4.                 Шейнблит А.Е. Курсовое проектирование деталей машин. М. «Высшая школа» 1991.

5.                 ГОСТ 2.104-68 ЕСКД Основные надписи.

6.                 ГОСТ 2. 105-95 ЕСКД Общие требования к текстовым документам.

7.                 ГОСТ 2. 306-68 ЕСКД Обозначение графических материалов и правила нанесения их на чертежах.

8.                 ГОСТ 2. 316-68 ЕСКД Правила нанесения на чертежах надписей, технических требований и таблиц.

9.                 Дзюба В.П. Методические указания для студентов по выполнению курсового проекта по дисциплине детали машин, Белогорск 2006.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.