Меню
Поиск



рефераты скачать Проектирование производства по получению карбинола (метанола)

Н2О

 

 

 

 

 

 

 

 

54,7

43,98

44,0

0,49

 

 

 

 

Всего

2550

100

1208

100

24000

100

9550

100

22494,1

100

9489,3

100

43,04

100

35,6

100

Компо­ненты

 

Газ перед сепаратором

Продувочные газы

Карбинол-сырец


м 3

об. дол.%

кг

мас. дол%

м 3

об. дол.%

кг

мас. дол%

м 3

об. дол.%

кг

масс. дол



          СО2

193,0

0,9

378,2

4,54

2,59

0,9

5,09

4,54







СО

2359,5

11,0

2937,1

35,3

31,70

11,0

39,63

35,3







             Н2

25680

73,1

1413,1

16,92

211,17

73,1

19,04

16,92







          СН4

172,2

3,6

553,5

6,62

9,88

3,6

7,08

6,62







N2

2445,3

11,4

3059,8

36,62

32,86

11,4

41,10

36,62







(СН3)2О









14,60

2,05

30

3,0



СН3ОН









640,30

89,92

915

91,5



   С4Н9ОН









3,30

0,46

11

1,1



         Н2О









54,72

7,67

44

4,4



Всего

21450

100

8342

100

288,2

100

111,8

100

712,92

100

1000

100





Приход состоит из суммирования статей  “исходный газ”, “газ перед сепаратором”.

Расход состоит из суммирования статей "танковые газы", "продувочные газы", "газ перед сепаратором", "карбинол-сырец".

Определим эффективный фонд рабочего времени

Z=(365-II-B-P)∙24,ч                                                                            (3.31)

Z=365∙24-160=8600 ч

Часовая производительность цеха:

Находим массовые и мольные расходы всех компонентов реакционной массы по всем статьям:

                                                                                        (3.32)

                                                                                          (3.33)

Пример расчета статьи "карбинол-сырец":


         ;

        

                                            (3.34)

Весь остальной расчет выполняется аналогично.

Результаты расчетов сведем в таблицу 3.5.

Таблица 3.5

Материальный баланс синтеза  карбинола-сырца

 

Приход

Расход

Статья

кг/ч, 10-3

кмоль/ч, 10-3

Статья

кг/ч, 10-3

кмоль/ч, 10-3

Исходный газ

29390,0

2804,57

Танковые газы

622,9

33,69

Газ перед сепаратором

123146,0

14111.97

Газ перед сепаратором

123146,0

14111.97

 

 

 

Продувочные газы

1957,7

224,32

 

 

 

Карбинол-сырец

17441,9

818,11

Всего

152536,0

16480,59

Всего

143168,5

15188,09


Расхождение составляет 0,06%, что допустимо.


Найдем степени конверсии исходных веществ:

 



(3,35)

 Находим селективности реакций по целевому и побочному продукту:

                                    (3.36)

         



4. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ


4.1. Тепловой расчет



Рис. 4.1 Схема тепловых потоков

Q1-теплота, поступающая с исходной реакционной смесью;

Q2- теплота, поступающая с электрообогревом,

Q2-теплота, уносимая с продуктами реакций;

Q4- потери тепла в окружающую среду;

Q5-теплота химического превращения.

Q5+ Q2+ Q5= Q3-Q4                                                                                     (4.1)

4.1.1. Теплота, поступающая с исходной реакционной смесью и теплота, уносимая продуктами реакций

Тепловые потоки поступающего сырья и продуктов реакций определяют по формулам:
Qi=Gi∙Ci∙T                                                                                     (4.2)

Qi=Fj∙C° p,i∙T                                                            (4.3)

где, Q-тепловой поток, Вт

G-массовый расход, кг/с

Cj-удельная теплоемкость, Дж/кг-К

С°р,i-молярная теплоемкость при постоянном давлении, Дж/моль-К Т-температура, К

Примем температуру  парогазовой смеси  на  входе в  реактор180 °С  (453  К), температура на выходе 300 °С (573 К). Найдем теплоемкости веществ, входящих и выходящих из реактора при указанных температурах по справочнику [7, с. 73-75]. Полученные данные сведем в таблицу 4.1.

Таблица 4.1

Теплоемкость компонентов реакционной смеси

                                    

                  В-ва

Пар-мы

СО2

СО

Н2

СН4

N2

(СНз)2О

СНзОН

С4Н9ОН

Н2О

Т=453К С, Дж/моль∙K

•К

44,074

30,043

29,00

44,564

29,814

 

 

 

 

Т=573К С, Дж/моль∙K

•К

46,719

30,619

29,30

51,377

30,327

102,28

75,231

190,64

36,237

По формуле (4.3) найдем теплоту, поступающую с исходной реакционной cмесью:

Qi=453  • (170,02∙103 ∙44,074 + 2099,35∙103∙30,043 +  11752,82∙103∙29,00 + +530,52∙103∙44,564 +1927,88∙103∙29,814) /3600=61974,92∙103 кВт

По формуле (4.3) найдем теплоту, уносимую с продуктами реакций:

Q3=573∙ (133,2∙103∙46,719   +   1583,06∙103∙30,619   +   10493,61∙103∙29,30   +   519,37∙103∙51,377   + 1638,78∙103∙30,327  +   13,32∙103∙102,28 + 498,11∙103∙75,231   +    +266,03∙103∙190,64+42,61∙103∙36,237) /3600 =84305,89∙103 кВт


4.1.2. Теплота химического превращения


Теплота химического превращения состоит из теплоты основных и побочных химических реакций. Теплота химической реакции рассчитывается по закону Гесса:


                                                                              (4.4)

CO + 2H2 → CH3OH                                    + 90,73 кДж/моль


2СО + 4H2 → (CH3)2O +H2O                       - 322,0 кДж/моль


CO + 3H2 → CH4 + H2O                    + 257,0 кДж/моль

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.