Меню
Поиск



рефераты скачать Оборудование буровой установки

В соответствии с кинематикой установки привод может иметь три основных исполнения: индивидуальный, групповой и ком­бинированный или смешанный.

Индивидуальный привод — каждый исполнительный меха­низм (лебедка, насос или ротор) приводится от электродвига­телей или ДВС независимо друг от друга. Более широко этот вид привода распространен с электродвигателями. При его ис­пользовании достигается высокая маневренность в компоновке и размещении бурового оборудования на основаниях при мон­таже.

Групповой привод — несколько двигателей соединены сум­мирующей трансмиссией и приводят несколько исполнительных механизмов. Его применяют при двигателях внутреннего сго­рания,

Комбинированный привод — использование индивидуального и группового приводов в одной установке. Например, насосы приводятся от индивидуальных двигателей, а лебедка и ротор от общего двигателя. Во всех случаях характеристики привода должны наиболее полно удовлетворять требуемым характери­стикам исполнительных механизмов.

Потребителями энергии буровой установки являются: в процессе бурения — буровые насосы, ротор  (при роторном бурении), устройства для приготовления   и   очистки   бурового раствора от выбуренной   породы;   компрессор,   водяной   насос и др.;

при спуске и подъеме колонны труб — лебедка, компрессор, водяной насос и механизированный ключ.

Приводы также делятся на главные (приводы лебедки, насосов и ротора) и вспомогательные (приводы осталь­ных устройств и механизмов установки). Мощность, потребляе­мая вспомогательными устройствами, не превышает 10—15% мощности, потребляемой главным оборудованием.

Гибкость характеристики — способность силового привода автоматически или при участии оператора в процессе работы быстро приспосабливаться к изменениям нагрузок и частот вра­щения исполнительных механизмов. Гибкость характеристики зависит от коэффициента приспособляемости, диапазона регу­лирования частоты вращения валов силового привода и прие­мистости двигателя.

Коэффициент гибкости характеристики определяется отно­шением изменения частоты вращения к вызванному им откло­нению момента нагрузки. Он пропорционален передаточному отношению и обрат­но пропорционален коэффициенту перегрузки.

Приемистостью называется интенсивность осуществления переходных процессов, т. е. время, в течение которого двига­тель и силовой привод реагируют на изменение нагрузки и из­меняют частоту вращения.

Приспособляемость — свойство силового привода изменять крутящий момент и частоту вращения в зависимости от момен­та сопротивления. Собственная приспособляе­мость— свойство двигателя приспособляться к внешней на­грузке. Искусственная приспособляемость — свой­ство трансмиссий приспосабливать характеристику двигателя к изменению внешней нагрузки.

ТРАНСМИССИИ БУРОВЫХ УСТАНОВОК


 ЭЛЕМЕНТЫ ТРАНСМИССИИ БУРОВЫХ УСТАНОВОК

В буровом оборудовании для осуществления кинематиче­ской связи между валами в механизмах, изменения скорости и направления вращения, преобразования крутящих моментов ис­пользуют цепные, клиноременные и зубчатые передачи. В уста­новках малой мощности для геологоразведочного бурения при небольших межосевых расстояниях между валами (до 0,5 м) ис­пользуют почти всегда зубчатые передачи, а при межосевых расстояниях более 0,5 м — клиноременные. В установках для эксплуатационного бурения для передачи «больших мощностей (500—2000 кВт и более) и межосевых рас­стояниях более 1 м применяют многорядные цепные и клиноременные передачи. Зубчатые передачи используют при межосе­вых расстояниях менее 1м — в редукторах насосов, реверсив­ных устройствах КПП, приводах роторов и др.


СИСТЕМЫ УПРАВЛЕНИЯ БУРОВЫМИ УСТАНОВКАМИ


 ВИДЫ, ТРЕБОВАНИЯ И ХАРАКТЕРИСТИКИ

Буровая установка представляет собой сложный комплекс различных машин и механизмов, обеспечивающих выполнение разнообразных технологических операций при проводке сква­жин. Эффективность работы этого комплекса зависит от экс­плуатационных качеств, маневренности, четкости и надежности работы всех его элементов. Важную роль в комплексе играет система управления.

Системы управления обеспечивают:

пуск, остановку и регулировку работы двигателей;

включение и выключение трансмиссий, которые блокируют двигатели, приводящие буровые насоса, ротор или лебедку;

включение и выключение буровых насосов, лебедки, ротора, механизма подачи и тормозов (гидравлического, электрического и ленточного); изменение частоты вращения барабана лебедки, насосов и ротора; включение и выключение устройств для свинчивания и раз­винчивания бурильных труб;

управление работой ключей, клиньев и других механизмов при отвинчивании и установке бурильных свечей в магазин в процессе спуска и подъема колонны;

управление оборудованием для герметизации устья скважи­ны при бурении и проявлениях газа;

включение и выключение компрессора, вспомогательной ле­бедки или насоса, осветительной установки, устройств для очи­стки и приготовления бурового раствора и других вспомогатель­ных механизмов.

Для приведения в действие органов управления используют­ся различные виды энергии: в системах ручного механического управления —сила оператора; в пневматических, гидравличе­ских и электрических системах —энергия сжатого воздуха, жид­кости или электричества.

Система управления состоит из двух типов органов: управ­ляющих функциями главных и вспомогательных исполнитель­ных механизмов и аппаратуры, сигнализирующей оператору или регистрирующей результаты исполнения команды.

Система управления (рис. XI. 1) содержит пять основных органов:

— воспринимающий команду (кнопка, рукоятка, рычаг, пе­даль и др.), на который воздействует оператор — человек, про­граммирующее устройство или микропроцессор;

— промежуточный, передающий команду к исполнительным механизмам с использованием внешней энергии: тяги, трубопро­вода, электрокабеля и др.;

— исполнительный, воздействующий на механизм,    выпол­няющий технологическую функцию: муфта сцепления, золотник, кран и др.;

— фиксирующий  или  ограничивающий  исполнение  коман­ды: защелка, концевой выключатель, стопор и др;

— обратная связь, информирующая оператора об исполне­нии команды или заданного режима    работы:    измерительный прибор, манометр, термометр, динамометр, световая или звуко­вая сигнализация.

В буровых установках применяется три вида систем управ­ления:

централизованная — расположенная у поста бурильщика и позволяющая ему управлять основными исполнительными меха­низмами:    лебедкой, насосами, ротором,    превенторами и др.;

индивидуальная или местная — расположенная вблизи того или иного агрегата;

смешанная-—позволяющая управлять агрегатом как с поста бурильщика, так и непосредственно около агрегата; например, ДВС с суммирующей трансмиссией могут управляться дизели­стом или бурильщиком и др.

Всеми устройствами управляют с постов бурильщика, дизе­листа или с пульта, расположенного вблизи того или иного агрегата (оборудования). В соответствии с выполняемыми функциями цепи управления подразделяются на независимые и взаимосвязанные. Независимые цепи применяют в тех случаях, когда устройства не связаны друг с другом, например, включение лебедки, насосов, ротора. Взаимосвязанные (сблокированные) системы управления используют, когда недо­пустимо одновременное включение нескольких движений, напри­мер, одновременное включение прямого и обратного вращения ротора или двух скоростей лебедки.

В связи со сложностью и многообразием функций, выполняе­мых механизмами для обеспечения маневренности, быстроты и удобства манипулирования, в буровых установках применяют комбинированные системы управления, позво­ляющие наиболее   полно удовлетворить все требования.

Степень совершенства системы управления зависит от ее качеств, главными из которых являются:

мощность, усилие или крутящий момент для осуществления операций управления;

легкость, маневренность и автоматизм органов, на которые воздействует оператор и которые осуществляют исполнение ко­манды.

Совершенство системы управления зависит как от конструк­ции органов системы управления, так и от рабочей позы бу­рильщика и усилий, затрачиваемых им в процессе управления. Неудобство позы рабочего, необходимость приложения больших усилий вызывают быстрое утомление рабочего и снижают его производительность. Усилие, затрачиваемое рабочим на мани­пуляции рычагами, обычно не более 30—50 Н, тормозной руко­яткой— не более 150 Н, ножными педалями и редко переклю­чаемыми рычагами — не более 100—200 Н. Давление рукоятки, кроме тормозной, обычно осуществляется в течение нескольких секунд и неутомительно для бурильщика. Рукоятки и педали располагают так, чтобы ими было удобно пользоваться без изменения рабочей позы и места бурильщика.

Четкость, стабильность и мнемоничность управления обеспе­чиваются тем, что каждая команда соответствует определенной функции и не вызывает изменения положения других органов управления. Величина хода, например, рукоятки, при включе­нии и выключении должна быть всегда одинакова и стабильна при каждом повторении команды.

Мнемоничность управления обеспечивается таким располо­жением органов управления, при котором оператор освобожден от излишнего напряжения памяти. Оператор не должен каждый раз вспоминать, где находится тот или иной рычаг управления, в какую сторону и на какое расстояние следует его передвинуть или повернуть, чтобы включить или выключить, например, ключ для свинчивания или развинчивания бурильных замков.

Направление движения руки оператора должно совпадать с направлением движения механизма. При вертикальном рас­положении рычага, например тормозного, торможение осуще­ствляется движением рычага вниз, так как при этом удобнее приложить к усилию руки еще вес тела рабочего, а при растормаживании наоборот. При горизонтальном расположении рыча­гов включение, требующее большого усилия рабочего, осуществ­ляется поворотом рычага «на себя», а выключение — «от себя». Штурвалы при включении обычно вращают «от себя», а при выключении — «на себя». Педальное управление при рабочей позе стоя осуществляется только в механизмах, требующих эпизодического включения. Включение осуществляется нажати­ем педали «вниз», а выключение — «вверх». При кнопочном управлении — верхняя кнопка «пуск»,  а  нижняя «стоп».

Пульт бурильщика снабжается табличкой с указанием на­правления движения каждой кнопки или рычага и выполнения ими функций. Надписи должны быть четкими, хорошо освещать­ся и легко читаться без изменения рабочей позы оператора. Прогрессивность, мягкость и гибкость — важные качества систем управления. Прогрессивность обеспечивает безударность и мягкость включения за счет того, что полное усилие на органе управления возникает не сразу, а с некоторым запаздыванием, а затем быстро и энергично возрастает до требуемой величины, осуществляя включение без рывков и ударов. Например, в лен­точных тормозах, буровых лебедок применяют кулачковые или рычажные механизмы, с помощью которых передаточное отно­шение изменяется по мере поворота рычага. Это обеспечивает прогрессивное увеличение тормозного усилия.

Быстродействие системы управления — важное качество для таких механизмов, как подъемная система буровых лебедок, вы­полняющая массовые, часто повторяющиеся операции при СПО. При этом оператор должен всегда знать или видеть, что его команда выполнена точно.

Структурная прочность органов системы управления и их конструкция выполняются такими, чтобы не происходило изно­са и деформации их элементов в процессе работы, монтажа, демонтажа и транспортировки буровой установки, приводящих к нарушению точности и четкости управления.

Безопасность системы управления обеспечивается хорошим расположением органов управления, легкостью их обслужива­ния, соблюдением необходимых расстояний, хорошей освещен­ностью, легкостью и удобством манипулирования. Все это ис­ключает возможность травматизма обслуживающего персонала и порчу оборудования.




































ОБОРУДОВАНИЕ ДЛЯ ГЕРМЕТИЗАЦИИ УСТЬЯ СКВАЖИНЫ


В настоящее время при бурении не только разведочных, но и эксплуатационных скважин широко применяется оборудова­ние для герметизации устья скважин. Раньше это оборудование использовали в основном для борьбы с выбросами жидкости и газа при проявлениях высоких давлений в скважине. В связи с применением более легких растворов для бурения давление в скважине в процессе бурения регулируют при помощи превен-торов. Изменились требования к охране окружающей среды и недр земли.

Для герметизации устья скважины используют три вида пре-венторов: плашечные — глухие или проходные для полного перекрытия отверстия или кольцевого пространства, если в сква­жине находится колонна труб; универсальные — для пере­крытия отверстия в скважине, если в ней находится любая часть бурильной колонны: замок, труба, ведущая труба, вра­щающиеся — для уплотнения устья скважины с вращающей­ся в ней трубой или ведущей трубой.

Ни плашечные, ни универсальные превенторы не рассчитаны на вращение колонны, если они полностью закрыты.

 СХЕМЫ ОБОРУДОВАНИЯ ДЛЯ ГЕРМЕТИЗАЦИИ УСТЬЯ СКВАЖИНЫ

Существует большое разнообразие конструкций скважин и условий бурения, поэтому для обеспечения надежности охраны окружающей среды и недр земли схемы оборудования устья скважин стандартизованы. ГОСТ 13862—80 предусматривает четыре типовых схемы оборудования устья скважин с числом плашечных превенторов от одного до четырех при бурении на суше. Схемы оборудования при установке превенторов на дне моря и большой толще воды значительно сложнее.

В зависимости от ожидаемой интенсивности нефтегазопроявлений в скважине рекомендуются следующие схемы монтажа оборудования для герметизации устья скважины:






двухпревенторная с двумя линиями манифольда (рис.XIII.а);

трехпревенторная с двумя линиями манифольда (рис. XIII.1,6);

трехпревенторная с тремя линиями манифольда (рис. XIII.1,в);

трехпревенторная с четырьями линиями манифольда (рис. XIII.1,г).

Обвязка превенторов — манифольд — предназначена для управления давлением в скважине при нефтегазопроявлениях путем воздействия на пласт закачкой раствора и создания про­тиводавления на него. Манифольд состоит из линий дросселиро­вания и глушения, которые соединяются со стволовой частью оборудования для герметизации и представляют собой систему трубопроводов и арматуры (задвижки и регулируемые дроссели с ручным или гидравлическим управлением, манометры и др.).

Линия глушения соединяется с буровыми насосами и служит для закачки в скважину утяжеленного раствора по межтрубному пространству. При необходимости линия глушения используется для слива газированного бурового раствора в ка­меру-дегазатор циркуляционной системы буровой установки.

Линия дросселирования служит для слива бурового раствора и отбора флюидов из скважины с противодавлением на пласт, а также для закачки в скважину жидкости с по­мощью цементировочных агрегатов. В схеме на рис. XIII.1, г, применяемой при бурении скважин с повышенной опасностью нефтегазопроявлений, верхняя линия дросселирования служит резервной.

Манифольды рассчитывают на рабочее давление 21, 35, 70 МПа. В зависимости от конструкций задвижек они бывают двух типов: МП — с клиновыми задвижками и МПП — с пря­моточными задвижками. Манифольды типа МП в блочном ис­полнении  шифруются МПВ.  В  шифре  манифольдов  цифрами указывается диаметр их проходного отверстия (в мм) и рабочее давление (в МПа). Например, манифольд диаметром 80 мм (принимаемый в настоящее время для всех манифольдов) на давление 35 МПа шифруется МПВ-80Х35.

Манифольды устанавливают на рамах-салазках с телескопи­ческими стойками, позволяющими регулировать высоту их рас­положения в пределах 0,65—1,25 м в зависимости от положения колонной головки над устьем скважины. Высота расположения головки изменяется после спуска и цементирования каждой обсадной колонны. Высота разъемного желоба устанавливается по расстоянию между фланцевой катушкой и ротором буровой установки.

Как видно из схем на рис. XIII.1, на установках монтируют один или два плашечных превентора. В морских скважинах с устьем на дне моря устанавливают три, а иногда и четыре плашечных превентора, а над ними универсальный превентор. В морских установках монтируют иногда два универсальных превентора. При бурении под давлением над этим превентором располагают вращающийся превентор.

После монтажа линии манифольдов превенторы подвергают гидроиспытаниям под давлением в 1,5 раза превышающим ра­бочее. Испытания проводят с использованием смазки «Нефте-газ-203» марки В или индустриального масла 12 или 20 по ГОСТ 20799—75 с добавкой 25—30% по объему смазки «Неф-темаз-203» марки Б.


 УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПРЕВЕНТОРОВ


Плашечные превенторы


Превентор, выпускаемый ВЗБТ (рис. ХШ.2) состоит из стального литого корпуса 7, к которому на шпильках крепятся крышки / четырех гидравлических цилиндров 2. В полости А цилиндра 2 размещен главный поршень 3, укрепленный на што­ке 6. Внутри поршня размещен вспомогательный поршень 4, служащий для фиксации плашек 10 в закрытом состоянии от­верстия Г ствола скважины. Для закрытия отверстия плашками жидкость, управляющая их работой, поступает в полость А, под действием давления которой поршень перемещается слева на­право.

Вспомогательный поршень 4 также перемещается вправо, и в конечном положении он нажимает на кольцо-защелку 5 и фиксирует тем самым плашки 10 в закрытом состоянии, что исключает самопроизвольное их открытие. Чтобы открыть от­верстие Г ствола, надо передвинуть плашки влево. Для этого управляющая  жидкость должна   быть  подана  под давлением в полость В, которая перемещает вспомогательный поршень 4 по штоку 6 влево и открывает защелку 5. Этот поршень, дойдя до упора в главный поршень 3, передвигает его влево, тем са­мым раскрывая плашки. При этом управляющая жидкость, на­ходящаяся в полости £, выжимается в систему управления.

Плашки 10 превентора могут быть заменены в зависимости от диаметра уплотняемых труб. Торец плашек по окружности уплотняется резиновой манжетой 9, а крышка 1 — проклад­кой //. Каждый из превенторов управляется самостоятельно, но обе плашки каждого превентора действуют одновременно. Отверстия 8 в корпусе 7 служат для присоединения превентора к манифольду. Нижним торцом корпус крепится к фланцу устья скважины, а к верхнему его торцу присоединяется универсаль­ный превентор.

Как видно, плашечный превентор с гидравлическим управ­лением должен иметь две линии управления: одну для управ­ления фиксацией положения плашек, вторую для их перемеще­ния. Превенторы с гидравлическим управлением в основном применяют при бурении на море. В ряде случаев нижний пре­вентор оборудуется плашками со срезающими ножами для пе­ререзания находящейся в скважине колонны труб.










Для бурения на суше применяют в основном однокорпусные плашечные превенторы с двойной системой перемещения пла­шек: гидравлической и механической без системы гидравличе­ского управления их фиксацией. По конструкции эти превенто­ры (рис. XIII.3) значительно проще. Такой превентор состоит из корпуса 2, внутри которого помещаются плашки и крышки с гидроцилиндрами 1 и 5. Корпус 2 представляет собой сталь­ную отливку коробчатого сечения, имеющую проходное верти­кальное отверстие диаметром D и сквозную горизонтальную прямоугольную полость, в которой размещаются плашки. Пере­крывающие устье скважины плашки комплектуются под опре­деленный размер трубы. При отсутствии в скважине бурильных труб устье перекрывается глухими плашками.

Плашки превентора разъемной конструкции состоят из кор­пуса 9, сменных вкладышей 11 и резинового уплотнения 10. Плашку в собранном виде насаживают на Г-образный паз а штока 7 и вставляют в корпус превентора. Полость корпуса с обеих сторон закрывается откидными крышками гидроцилинд­ров / и 5, шарнирно подвешенными на корпусе. Крышка к кор­пусу крепится болтами   4.

Каждая плашка перемещается поршнем 6 гидравлического цилиндра 8. Масло от коллектора 3 по стальным трубкам и через поворотное ниппельное соединение под давлением посту­пает в гидроцилиндры. Полость плашек превентора в зимнее время (при температуре —5°С и ниже) обогревается паром, подаваемым в паропроводы. Поршень со штоком, крышка и цилиндры уплотняются при помощи резиновых колец.


Универсальные превенторы


Универсальный превентор предназначен для повышения на­дежности герметизации устья скважины. Его основной рабочий элемент — мощное кольцевое упругое уплотнение, которое при открытом положении превентора позволяет проходить колонне бурильных труб, а при закрытом положении-—сжимается, вследствие чего резиновое уплотнение обжимает трубу (веду­щую трубу, замок) и герметизирует кольцевое пространство между бурильной и обсадной колоннами. Эластичность резино­вого уплотнения позволяет закрывать превентор на трубах различного диаметра, на замках и УБТ. Применение универ­сальных превенторов дает возможность вращать и расхажи­вать колонну при герметизированном кольцевом зазоре.

Кольцевое уплотнение сжимается либо в результате непо­средственного воздействия гидравлического усилия на уплот­няющий элемент, либо вследствие воздействия этого усилия на уплотнение через специальный кольцевой поршень.

Универсальные превенторы со сферическим уплотняющим элементом   и  с   коническим   уплотнителем   изготовляет   ВЗБТ.

Универсальный гидравлический превентор со сферическим уплотнением плунжерного действия (рис. XIII.4) состоит из корпуса 3, кольцевого плунжера 5 и кольцевого резинометал-лического сферического уплотнителя /. Уплотнитель имеет форму массивного кольца, армированного металлическими вставками двухтаврового сечения для жесткости и снижения износа за счет более равномерного распределения напряжений. Плун­жер 5 ступенчатой формы с центральным отверстием. Уплотни­тель / фиксируется крышкой 2 и распорным кольцом 4. Корпус, плунжер и крышка образуют в превенторе две гидравлические камеры А и Б, изолированные друг от друга манжетами плун­жера.

При подаче рабочей жидкости под плунжер 5 через отвер­стие в корпусе превентора плунжер перемещается вверх и об­жимает по сфере уплотнение / так, что оно расширяется к цент­ру и обжимает трубу, находящуюся внутри кольцевого уплот­нения. При этом давление бурового раствора в скважине будет действовать на плунжер и поджимать уплотнитель. Если в сква­жине нет колонны, уплотнитель полностью перекрывает отвер­стие. Верхняя камера Б служит для открытия превентора. При нагнетании в нее масла плунжер движется вниз, вытесняя жид­кость из камеры А в сливную линию. Уплотнитель расширяется и принимает прежнюю форму.

Кольцевой уплотнитель позволяет:

протаскивать колонны общей длиной до 2000 м с замками или муфтами с конусными фасками под углом 18°;

расхаживать и проворачивать колонны;

многократно открывать и закрывать превентор.

Конструкция превентора допускает замену уплотнителя без его демонтажа. Управление универсальным превентором может осуществляться либо с помощью ручного плунжерного насоса, либо с помощью насоса с электроприводом. Время закрытия универсального превентора гидроприводом 10 с.
























Вращающиеся превенторы

Вращающийся превентор применяется для герметизации устья скважины в процессе ее бурения при вращении и расхаживании бурильной колонны, а также при СПО и повышенном давлении в скважине. Этот превентор уплотняет ведущую тру­бу, замок или бурильные трубы, он позволяет поднимать, спускать или вращать бурильную колонну, бурить с обратной промывкой, с аэрированными растворами, с продувкой газо­образным агентом, с равновес­ной системой гидростатическо­го давления на пласт, опробо­вать пласты в процессе газо­проявлений.

Основной элемент вращаю­щегося превентора (рис. ХШ.5) — уплотнитель 2, поз­воляющий протаскивать инст­румент через его отверстие. Уплотнитель состоит из метал­лического основания и резино­вой части, прикреплен к ство­лу 4 при помощи байонетного соединения и болтов. От прово­рачивания его предохраняют шпоночные выступы, входящие в вырезы ствола.

В патроне 7 превентора на двух радиальных 5 и одном упор­ном 6 подшипниках качения смонтирован ствол 4. Манжетные уплотнения 3 служат для предохранения превентора от попада­ния в него жидкости из скважины между стволом, корпусом и патроном. Фиксация патрона 7 в корпусе / осуществляется за­щелкой 9, которая открывается под давлением масла, подавае­мого ручным насосом через штуцер 8.



















Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.