Меню
Поиск



рефераты скачать Направленное бурение

               (5)

Искомое корреляционное уравнение зависимости зенитного угла от глубины скважины определяется как:

         (6)

На основании проведенных расчётов построены эмпирический (по данным столбцов li и θi табл. 2) и теоретический (по корреляционному уравнению) графики зависимости зенитного угла от глубины скважины (рис. 1).


Рис. 1. Зависимость зенитного угла (θ) от глубины скважины (l):

1 – эмпирическая; 2 – теоретическая


Аналогичным образом проводится корреляционный анализ зависимости азимутального угла от глубины скважины.

Таблица 3

Данные для проведения корреляционного анализа связи величины азимутального угла с длиной скважины

li, м

αi, град

li

αi –

(li )2

(αi )2

(li ) ∙ (αi )

50

71,7

-450

-15,23

202500

231,95

6853,5

150

75,6

-350

-11,33

122500

128,37

3965,5

250

80,5

-250

-6,43

62500

41,34

1607,5

350

85

-150

-1,93

22500

3,72

289,5

450

88,2

-50

1,27

2500

1,61

-63,5

550

90,8

50

3,87

2500

14,98

193,5

650

92,9

150

5,97

22500

35,64

895,5

750

93,7

250

6,77

62500

45,83

1692,5

850

94,7

350

7,77

122500

60,37

2719,5

950

96,2

450

9,27

202500

85,93

4171,5

5000

869,3



825000

649,76

22325


В столбце li записываются средние значения глубин стометровых отрезков скважин.

В столбце αi записываются средние значения азимутальных углов по всем пяти скважинам для соответствующих интервалов глубин.

Остальные столбцы рассчитываются в соответствии с приведенными в заголовке таблицы формулами.

          м,                                  (7)

где  – среднее значение глубины по всей выборке; n – число строк в таблице.

,                                 (8)

где  – среднее значение азимутального угла по всей выборке.

м,                (9)

где  – среднеквадратическое отклонение глубины скважины.

                                            (10)

где  – среднеквадратическое отклонение азимутального угла.

Оценка степени связи азимутального угла скважины с её глубиной осуществляется с помощью коэффициента корреляции :

                  (11)

Искомое корреляционное уравнение зависимости зенитного угла от глубины скважины определяется как:

    (12)

На основании проведенных расчётов построены эмпирический (по данным столбцов li и αi табл. 3) и теоретический (по корреляционному уравнению) графики зависимости азимутального угла от глубины скважины (рис. 2).

Рис. 2. Зависимость азимутального угла (α) от глубины скважины (l):

1 – эмпирическая; 2 – теоретическая


2. Расчет координат проектной скважины


На основании полученных в разделе 1 уравнений зависимости зенитного и азимутального углов от глубины скважины рассчитаны значения зенитных и азимутальных углов проектной скважины на глубинах 50, 150, 250, и тд. И заносятся в табл. 4

Таблица 4

Расчет координат траекторий скважин

Интервал глубин, м

Средние углы, град

Проекция отрезков на оси

X, Y, Z, м

Координаты скважины, м

θi

αi

lz

lx

ly

Z

X

Y

0 – 100

12,5

71,7

97,63

20,55

6,80

97,63

20,55

6,796

100 – 200

13,3

75,6

97,32

22,28

5,72

194,95

42,83

12,52

200 – 300

14,4

80,5

96,86

24,53

4,10

291,81

67,36

16,62

300 – 400

16,1

85

96,08

27,63

2,42

387,88

94,99

19,04

400 – 500

17,9

88,2

95,16

30,72

0,97

483,04

125,71

20,00

500 – 600

19,9

90,8

94,03

34,03

– 0,48

577,07

159,74

19,53

600 – 700

21,6

92,9

92,98

36,77

– 1,86

670,05

196,51

17,67

700 – 800

22,5

93,7

92,39

38,19

– 2,47

762,44

234,69

15,20

800 – 900

23,5

94,7

91,71

39,74

– 3,27

854,14

274,44

11,93

900 – 1000

24,9

96,2

90,70

41,86

– 4,55

944,85

316,29

7,38


Расчет производится по следующим формулам:

                                             (13)

где  – проекция i-го отрезка скважины на вертикальную ось Z; l – длина отрезка скважины по оси, l = 100 м;  – средний зенитный угол отрезка скважины на i – м интервале.

                                    (14)

где  – проекция i-го отрезка скважины на горизонтальную ось X;  – средний азимут отрезка скважины на i-м интервале.

                                         (15)

где  – проекция i-го отрезка скважины на горизонтальную ось Y.

Текущие координаты скважины находятся путём последовательного суммирования проекций отрезков скважин на одноимённые оси:

                                               (16)

                                          (17)

                                        (18)

где Zi, Xi,Yi – текущие координаты трассы по соответствующим осям.

На основании табл. 4 строится вертикальная и горизонтальная проекции скважины (рис. 3).

Рис. 3.  вертикальная и горизонтальная проекции скважины

3. Выбор технических средств и описание методики проведения инклинометрии


В процессе бурения необходимо контролировать положение оси скважины в пространстве с целью: определения истинного положения полезного ископаемого и правильного построения геологического разреза и определения положения забоя скважины.

Различается два вида контроля искривления скважин – оперативный и плановый.

 

3.1 Оперативный контроль искривления скважин


Оперативный контроль – осуществляется силами буровой бригады через 15 – 20 м бурения скважины или один раз в сутки и предназначен для определения начала существенного искривления скважины и своевременного принятия мер для его устранения.

Оперативный контроль следует проводить при:

1)                      пересечении буровым снарядом перемежающихся слоев пород различной твердости, сопровождающемся изменением зенитного и азимутального углов;

2)                      пересечении мягких несцементированных или сильно разрушенных пород, тектонических нарушений, трещин, пустот, а также при выходе из зоны осложнения;

3)                      смене пород с различными анизотропными свойствами;

4)                      смене диаметра скважины;

5)                      перед каждым циклом искусственного искривления и по окончания цикла искривления;

3.2 Плановый контроль искривления скважин


Плановый контроль – осуществляется геофизическими (каротажными) отрядами через определенные интервалы бурения (практически через 200 – 300 м проходки) или по всему стволу скважины после окончания ее бурения до проектной глубины.

Особенности технологии проведения планового контроля:

· измерение зенитных и азимутальных углов осуществляется обычно через 10 – 20 м при подъеме прибора (инклинометра) из скважины;

· скорость подъема прибора не > 2000 – 2500 м/час;

· глубины определяются по счетчику;

· при повторных замерах в одной скважине перекрывается не менее 5 точек прежнего замера;

· результаты измерений заносятся в буровой журнал.

 

3.3 Инклинометры


По назначению инклинометры разделяются на приборы:

· для измерения только зенитного угла;

· для измерения зенитного угла и азимута.

Датчики для измерения зенитного угла разделяются на две группы:

· использующие принцип горизонтального уровня жидкости;

· использующие принцип отвеса.

Датчики для измерения азимута:

· магнитная стрелка;

· гироскоп;

· щуп.

По способу измерения и передачи информации на поверхность инклинометры подразделяются на:

· забойные, производящие измерения и передачу информации в процессе бурения (телеметрические системы);

· приборы, опускаемые в скважину на кабеле и выдающие информацию в процессе подъема из скважины или спуска;

· автономные приборы, спускаемые на колонне бурильных труб и выдающие информацию только после подъема инструмента.

 

3.3.1 Инклинометры для оперативного контроля

Автономные компасные инклинометры оперативного контроля

Автономные компасные инклинометры оперативного контроля делятся на две группы [5].

1.                      Одноточечные приборы, обеспечивающие за один спуск в скважину измерение одной точки ее ствола (зенитного и азимута) в диапазоне зенитных углов от 2 до 178°.

2.                      Многоточечный фотографический инклинометр МТ-4-40 конструкции ВИТР, обеспечивающий за один спуск в скважину измерение до 100 точек ее ствола с регистрацией на 8-миллиметровой пленке; диапазон его работы от 2 до 60°.

Инклинометры оперативного контроля опускаются в наклонные скважины на тонком канате диаметром 3 – 4 мм с использованием портативных лебедок типа электрической лебедки ЛОК-1500 конструкции ВИТРа, а в горизонтальные и восстающие скважины с помощью бурильной колонны.

Спуск автономных инклинометров оперативного контроля должен осуществляться при использовании блок-трубы (рис. 4) скважины со счетчиком глубины.

К одноточечным инклинометрам относятся [5]:

·       электромеханический инклинометр ИОК-42 конструкции ВИТР

·       механические малогабаритные инклинометры МИ-42У и МИ-ЗОУ конструкции «Востказгеология».

Автономный одноточечный инклинометр ИОК-42

Автономный одноточечный инклинометр ИОК-42 представляет устройство, обеспечивающее его работу от автономного блока электропитания. Техническая характеристика представлена в табл 5 [5].

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.