Меню
Поиск



рефераты скачать Нанесение и получение металлических покрытий химическим способом

 

Для определения микрошероховатости могут быть использованы различные микроскопы (оптические, металлографические, растровые, электронные сканирующие), а также профилометры и профилографы [29].

 

2.1.5. Обезвреживание.


Для удаления значительного количества Сr6+, остающегося на поверхности диэлектрика после выполнения операций улавливания и (или) промывки, производят обезвреживание, заключающееся в обработке поверхности одним из растворов обезвреживания. При последующем активировании в коллоидном активаторе наиболее часто используют раствор кислоты соляной НС1 (плотность 1,19 г/см3), 150-500 мл/л. При этом промежуточные промывки между данными операциями не производят (их выполняют перед обезвреживанием), что дает возможность стабилизировать состав раствора активирования.

Если промывные операции после травления не обеспечивают достаточное удаление соединений Сr6+, обезвреживание осуществляют в двух растворах, например, натрия пиросульфита Na2S2O5 или кислоты соляной НС1, а затем после промывки – в растворе соляной кислоты.

Хром, оставшийся на поверхности обрабатываемых де­талей и приспособлений, способствует снижению стабильности работы последующих растворов, особенно сенсибилизации и химического меднения [30].

Приготовляют составы обезвреживания путем растворения рецептурного количества компонентов в рабочей ванне, заполненной наполовину обессоленной водой, и доведения объема до требуемого.

Корректировать растворы можно по данным химического анализа. Но часто эксплуатируют их до накопления значительного количества Сr3+ (о чем свидетельствует приобретение бесцветным раствором зеленоватой окраски), после чего заменяют свежими [1, 22].

2.1.5. Активирование.


Активирование металлических поверхностей. Непосредственно перед осаждением покрытий на детали проводится активирование поверхности с целью удаления тонких окисных пленок. Стальные детали выдерживают в течение 0,1-1,0 мин в 5-10%-ном растворе соляной или серной кислоты, а также в смеси, содержащей по 30-50 г/л каждой из кислот Высококремнистые стали можно активировать в 0,5-1,0%-ном растворе плавиковой кислоты. В случае осаждения на детали из стали 20 медного покрытия из пирофосфатного электролита активирование следует проводить в растворе следующего состава концентрированных кислот (объемная доля, %): азотная - 40, фосфорная - 40, серная – 20 [1].

Особенно большое внимание необходимо обратить на активи­рование хромоникелевых сталей типа 12Х18Н9Т, характеризующихся высокой пассивностью. Перед серебрением в роданистожелезисто-синеродистом электролите можно проводить химическое активирование в течение 20-30 мин в смеси, состоящей из 100 г/л азотной кислоты и 30 г/л бифторида калия, с последующим катодным активированием в растворе, содержащем 80 г/л хлористого никеля и 40 г/л соляной кислоты. Удовлетворительные результаты дает также анодное активирование в 10-15%-ной серной кислоте в течение 1-2 мин при плотности тока 10-15 А/дм 2. Для подготовки к осаждению покрытий на нержавеющую сталь и никелевые сплавы, например пермаллой, их можно активировать катодной обработкой в 15-20%-ной соляной кислоте в течение 20-30 с при плотности тока 8-10 А/дм 2.

Представляет интерес процесс катодного активирования с одновременным осаждением на детали тонкого слоя металла. Хорошие результаты были получены при такой обработке деталей из углеродистой стали перед пирофосфатным меднением. Электролит содержал 250 г/л сернокислого никеля и 50 г/л серной кислоты. Катодная плотность тока 8-10 А/дм2, продолжительность обработки 20-30 с.

Детали из сплава 40ХНЮ перед их никелированием рекомендуется после обычного активирования в разбавленной соляной кислоте обрабатывать в течение 1—2 мин в смеси  (мл): уксусная кислота - 650, азотная кислота (концентрированная) -300, соляная кислота – 5 и краситель метиленовый голубой - 1 г.

Для активирования поверхности деталей из меди и ее сплавов можно использовать 0,5-1,0%-ный раствор соляной кислоты, или смесь, состоящую из 30-50 г/л соляной и 30-50 г/л серной кислоты. Наиболее положительные результаты дает предварительная обработка в 3-6%-ном растворе цианистого калия, но ее можно использовать лишь в тех случаях, когда в дальнейшем на детали наносят покрытие из цианистого электролита. Активацию серебра или серебряных покрытий перед палладированием или родированием проводят в 0,5-1,0%-ном растворе серной кислоты. Повышение концентрации кислоты до 2-3% позволяет использовать такой раствор для активации деталей из алюминия, изготовленных по 1-, 2-, 3-му классам точности.

Хотя удаление тонких окисных пленок с поверхности деталей считается обязательной и необходимой операцией, способствующей прочному сцеплению покрытия с основным металлом, в последнее время исследования показали, что эта цель может быть достигнута иным путем. Иногда на металле формируются тонкие окисные пленки определенной структуры и пористости, присутствие которых не только не ухудшает, но и повышает прочность сцепления покрытия с основой, снижает пористость осадков. Примером эффективности такой обработки являются процессы осаждения металлических покрытий на предварительно оксидированный алюминий. Стальные детали перед хромированием обрабатывают на аноде в течение 0,5—1,0 мин при плотности тока 15—20 А/дм 2, чугунные — в течение 20—30 с. Анодирование алюминия перед осаждением на него металлических покрытий ведут в 30%-ном растворе фосфорной кислоты при 1,0—1,5 А/дм2 в течение 5—8 мин.

Для анодной обработки стальных деталей перед осаждением на них покрытий предложено использовать растворы следующих составов (г/л): раствор № 1 — серная кислота — 700—800; раствор № 2 — серная кислота — 700—800 и двухромовокислый калий — 20—30. Раствор № 3 приготовляется из концентрированных серной и фосфорной кислот в соотношении 1:1 по объему начальная плотность тока в первых двух электролитах— 10—15 А/дм2, в третьем— 15—30 А/дм 2. По мере формирования окисной пленки ток снижается, а напряжение возрастает до 10—15 В. Когда на аноде начинается бурное выделение кислорода, процесс можно считать законченным. При эксплуатации электролитов нельзя допускать разбавления их водой и попадания ионов хлора, так как это приводит к разрушению пассивирующей пленки и травлению металла.

Детали из меди и ее сплавов перед осаждением на них покрытий из цианистых электролитов можно обрабатывать в течение 0,5—1,0 мин на аноде при плотности тока 3—5 А/дм 2 в электролите, содержащем 30—40 г/л цианистого калия и 20—30 г/л углекислого калия.

Активирование диэлектрических поверхностей. Процесс активирования состоит в получении каталитически активного металла в результате взаимодействия активатора с восстановителем адсорбированным поверхностью в растворе сенсибилизации:

Sn2+ + Pd2+->Pd+Sn4+.

Получаемый при этом металл равномерно распределяется по всей поверхности в виде коллоидных частиц или малорастворимых соединений. Полное превращение таких соединений в металл часто происходит уже в растворе химического покрытия.

Успешное проведение процесса нанесения покрытия обеспечивают частицы палладия диаметром около 0,005 мкм в количестве 10 —15 на 1 мкм2.

Для активирования широко используют растворы, содержащие 0,01 - 5 г/л двухлористого палладия и 0,25 - 20 мл/л соляной кислоты. Они придают поверхностям высокую каталитическую активность, стабильны в работе, применимы для всех технологических процессов получения химических покрытий. Такие растворы не рекомендуется использовать лишь при обработке комбинированных поверхностей (из металла и диэлектрика), так как вследствие реакции контактного обмена раствор быстро истощается и не обеспечивает прочности сцепления покрытия с металлической основой.

Растворы активирования соединениями серебра находят ограниченное применение. Они малопригодны для активирования поверхности перед химическим никелированием, кобальтированием и другими процессами, не позволяют наносить покрытия без перемонтажа деталей, весьма чувствительны к загрязнению хлор-ионами из ванны сенсибилизации. В связи же с миграцией серебра по поверхности по­лимерных материалов их не используют при обработкедеталей в радиоэлектронике. Применяют соединения серебра в основном для активации поверхности пластмасс перед химическим меднением. При этом наличие на поверхности бурой окраски, вызванной осадком крупных частиц серебра (0,005 - 0,01 мкм), свидетельствует о качестве активирования [16].

Рекомендуемые составы растворов приведены в табл. 4. Раствор № 1 отличается малой концентрацией и небольшим расходом соли палладия, поэтому его использование более целесообразно, чем раствора №2. После активирования производят промывку в непроточной обессоленной воде для улавливания благородного металла. Затем детали промывают в проточной воде и загружают в ванну химического покрытия.

Таблица 4

Составы (г/л) растворов и режимы активирования

Компоненты и параметры

Номер раствора

1

2

Палладий двухлористый PdCl2

0.1-0.5


Кислота соляная HCl (плотность 1.19г/см3)

1-10мл/л


Серебро азотнокислое AgNO3


2-5

Аммиак водный NH3H2O (25%-ный), мл/л

 

10-15

Кислотность (оптимальная), рН

1.5-2.5

 

Температура, оС

18-25

18-25

Продолжительность, мин

1-5

1-3


При применении раствора № 2 после активирования диэлектрик обрабатывают в растворе, содержащем 50 мл/л 25 %-го раствора аммиака.

Корректируют растворы активирования по данным химического анализа концентрированным раствором активатора.

В растворы активирования не должны попадать ионы железа (Fe3+), так как они окисляют металлические частицы палладия, разрушая центры катализа.


2.2. Химическое никелирование


2.2.1. Область применения и условия образования NiP–покрытий.


Химическое никелирование достаточно широко внедряется в гальванотехнику благодаря ценным свойствам покрытия: высокой равномерности, большой твердости, значительной коррозионной стойкости и износостойкости.

Химически осажденный никель обладает более высокими защитными свойствами из-за меньшей пористости, чем электрохимически осажденный никель, а также потому, что осадки, содержащие в своем химическом составе фосфор, более стойки к агрессивным средам, чем чистый никель.

Вследствие своих специфических свойств химическое никелирование находит применение во многих отраслях машиностроения и приборостроения для покрытия металлических изделий сложного профиля (с глубокими каналами и глухими отверстиями), для увеличения износоустойчивости трущихся поверхностей деталей машин; для повышения коррозионной стойкости в среде кипящей щелочи и перегретого пара; для замены хромового покрытия (с последующей термической обработкой химического никеля), чтобы использовать вместо коррозионно-стойкой стали более дешевую сталь, покрытую химическим никелем, для никелирования крупногабаритной аппаратуры, для покрытия непроводящих мате­риалов, пластмасс, стекла, керамики и т.п.

Согласно современным представлениям, суммарный процесс химического никелирования включает в себя, по крайней мере, три реакции-

Механизм процесса химического никелирования очень сложен Согласно последним исследованиям [32], механизм реакций при химическом никелировании носит следующий характер.

Первой стадией процесса является реакция взаимодействия гипофосфита с водой. Эта реакция, протекающая на каталитической поверхности, заключается в замене водорода из связи Р – Н в молекуле гипофосфита на группу —ОН из воды. Реакция, описывающая это взаимодействие, выражается уравнением

                                                       (1)

Образующиеся при реакции электрон и адсорбированный атом водорода в условиях кислой и слабощелочной среды взаимодействуют с ионом водорода по реакции

Суммарная реакция взаимодействия гипофосфита с водой соответствует уравнению

                                                            (2)

В условиях щелочной среды (рН> 9) образующиеся при окислении гипофосфита в фосфит электрон и атом водорода из связи Р — Н, взаимодействуя с водой, приводят к молизации по типу электрохимической десорбции:

                                                                  (3)

Учитывая, что вторая константа диссоциации нона фосфита достаточно велика, можно полагать, что молизация водорода непосредственно связана с диссоциацией этого иона. В этом случае реакция электрохимической десорбции может быть представлена уравнением:

                                                            (4)

Из уравнения наглядно видно, что процесс окисления гипофосфита водой приводит к снижению рН раствора. Снижение рН раствора может оказаться и результатом непосредственной нейтрализации иона Н2РО3- ионом ОН -.

При наличии в растворе ионов никеля электроны восстанавливают их до металла:

Суммарную реакцию восстановления ионов никеля гипофосфитом можнопредставить в виде следующих уравнений:

                                          (5)

                                          (6)

При протекании реакций (5) и (6) могут также идти реакции (2) — (4), которые приводят к снижению коэффициента использования гипофосфита.

Одновременно с восстановлением никеля протекает реакция восстановления гипофосфита до элементарного фосфора. Реакция, приводящая к образованию фосфора, связана с разрывом связей Р — Н, Р — О и Р — ОН в молекуле гипофосфита. Протекание указанной реакции может быть представлено следующим уравнением.

                                                                         (7)

Суммарная реакция, включая и реакцию взаимодействия гипофосфита с водой, поставляющую электроны, выразится уравнением:

                                                           (8)

В соответствии с уравнением (7) экспериментально определяется установленная зависимость содержания фосфора в покрытиях от рН раствора, а именно увеличение количества фосфора в осадке с уменьшением величины рН.

Процесс образования Ni — Р-покрытий начинается самопроизвольно только на некоторых каталитически активных металлах. К их числу относятся никель, железо кобальт палладий и алюминий. Однако никелевое покрытие можно нанести и на другие металлы (например, на медь или латунь) если их после погружения в раствор привести в контакт с более электроотрицательным металлом, чем никель (например, с алюминием). В результате контактирования на поверхности покрываемого металла за счет работы  возникающего при этом  гальванического элемента  образуется слой никеля, на котором далее продолжается процесс восстановления.

Для покрытия каталитически неактивных металлов (медь и ее сплавы) был предложен другой метод, который заключается в нанесении на покрываемую поверхность каталитически активного металла (например, палладия). Палладий наносится погружением деталей на несколько секунд в палладиевый раствор. Следует отметить, что на некоторых металлах вообще не удается получить никелевого покрытия. К таким металлам относится олово, свинец, кадмий, цинк, висмут и сурьма.

Многочисленными исследованиями установлено, что кислые растворы  имеют  некоторые преимущества по сравнению с щелочными большую устойчивость к высокой температуре, более высокую скорость протекания процесса и лучшее качество покрытий. Однако и щелочные аммиачные растворы представляют интерес в некоторых случаях.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.