Меню
Поиск



рефераты скачать Исследование фазовых эффектов в бинарных азеотропных смесях

  

  3.1

В паровой фазе

  3.2

Общий фазовый эффект в этом случае для жидкой фазы равен нулю, для паровой фазы также равен нулю, так как y1 = x1. В остальных случаях фазовые эффекты рассматриваются в двух областях: до точки азеотропа и после нее.

Все изотермо-изобары жидкости обращены выпуклостью вверх. В связи с этим вдоль кривой, отделяющей гетерогенную область от гомогенной, в азеотропной точке изотермо-изобара для паровой фазы точечная, а для жидкости изотермо-изобара касается гетерогенной кривой в азеотропной точке. В азеотропной смеси изотермо-изобара совпадает с коннодой, соединяющей два состояния: паровое и жидкое. Проекция конноды на ось x, y есть нода. Изотермо-изобара в целом это ломаная. Для азеотропной смеси нода равна нулю.

Любой материальный баланс линеен, в том смысле, что участвующие в нем два потока разных составов лежат на одной прямой с потоком, из которого они образованы. Рассмотрим область до точки азеотропа.

В случае, когда температура постоянна, а давление является функцией состава, вектор  направлен вдоль прямой, образующей которой служит вектор-коннода (или реконнода). Таким образом, эти векторы, один из которых бесконечно мал, лежат на одной прямой. Если снести эти векторы на отрезок (концентрационный симплекс), то получим вектор-ноду  и вектор смещения состава . Эти векторы и должны лежать на одной прямой (рис. 2.2). Смещение состава вызывается либо введением dm молей пара в m молей жидкости, либо выводом dm молей пара из жидкости. Допускаем, что в первом случае dm имеет знак плюс, а во втором – минус.

Если рассмотреть проекцию вектора-ноды на ось x, y то получим для легколетучего компонента y1>x1. Таким образом, в случае ухода dm молей пара из жидкости векторы  и  будут направлены противоположно друг другу.

Приход или уход dm молей из жидкости приводит к изменению как ее состава, так и ее количества.

С одной стороны бесконечно малое количество ушедшего или пришедшего в жидкость вещества (компонента i) равно

 

С другой стороны это же количество можно выразить так

 

Очевидно

 

 xidm + mdxi = yidm

 mdxi = (yi – xi) dm

  ; где dt = d(lnm) 3.3

Очевидно, если dt >0 , то d(lnm) >0 и вещество приходит в жидкую фазу, если dt <0, то d(lnm) <0 – вещество уходит из жидкой фазы. Физический смысл здесь ясен. Если dt >0, количество жидкости увеличивается, а если dt <0 – уменьшается. Если i = 1, т. е. компонент легколетучий, имеем

 y1 > x1 dt >0, то dx1 >0 или

 y1 < x1 dt <0, то dx1 <0

Таким образом, для легколетучего компонента, согласно физическому смыслу, если уходит dm молей состава пара, то уменьшается концентрация компонента 1 в жидкости, а если приходит – увеличивается.

Если же i = 2, то y2 < x2, dt <0, dx2 >0

 y2 < x2, dt >0, dx2 <0

Для тяжелолетучего компонента, если уходит dm состава пара, то концентрация компонента 2 в жидкости увеличивается, а если приходит – уменьшается.

Вместе с тем, вектор  направлен противоположно вектору-ноде , если dm молей уходит из жидкости и имеет то же направление, если dm молей приходит в жидкую фазу. Это видно из уравнения

  3.4

В обоих случаях векторы колинеарны, это значит лежат на одной прямой, а их знаки определяются знаком dt как скалярного множителя (бесконечно малого).

Делаем вывод, что на диаграмме (рис. 3.1) в случае постоянной температуры и переменного давления вектор  лежит на одной прямой с вектором, который имеет координаты . Если же рассматривается этот же состав x1, имеющий объем Vж, то при постоянном давлении и температуре направление вектора должно совпадать с направлением изотермо-изобары жидкой фазы. Следовательно, этот вектор не колинеарен вектору <Vп – Vж, y1 – x1>. Образно говоря, движущая сила этого смещения состава другая. Эта движущая сила должна лежать на касательной к изотермо-изобаре жидкости, то есть, проекция на ось абсцисс x, y остается при этом неизменной, а изменяется проекция на ось ординат V. Таким образом, векторы  и  имеют разное направление, то есть, смещены друг относительно друга на угол .

Величина, определяющая вектор , находится по определенной методике.

1.                 Проводим касательную к изотермо-изобаре жидкости в точке x1, Vж.

2.                 Пересечение касательной с прямой y1 = const дает вторую точку вектора

(т. А).

3.                 Получаем вектор .

Начальной точкой этого вектора является точка с координатами (x1, Vж). Конечной точкой является точка А. Если рассматривается нода жидкость-пар, то ее координаты (Vп-Vж, y1-x1). Таким образом, имеем до точки азеотропа:

 Vп-Vж > 0, y1-x1 > 0,  > 0

  > 0

Тогда частный объемный фазовый эффект жидкой фазы будет равен (рис 3.1):

  > 0 3.5

Аналогичные построения на диаграмме делаем в области после точки азеотропа и получаем:

 Vп-Vж > 0, y1-x1 < 0,  < 0

  > 0

  > 0 3.6

Имеем частный фазовый эффект жидкой фазы в случае бинарной азеотропной смеси с минимумом температуры кипения:

  > 0 3.7

В случае энтропии частные фазовые эффекты определяются аналогично. Для жидкой фазы частный энтропийный фазовый эффект:

  > 0 3.8

Частные энтропийные фазовые эффекты жидкой фазы показаны на

 рисунке 3.2.

На рисунке 3.3 представлено изменение объема и концентрации в паровой фазе. В области до точки азеотропа имеем:

 Vж-Vп < 0, x1-y1 < 0,  > 0

 < 0

Получаем частный объемный фазовый эффект для паровой фазы

 < 0 3.9

После точки азеотропа

 Vж-Vп < 0, x1-y1 > 0, < 0

  < 0 3.10

Частный объемный фазовый эффект паровой фазы для бинарной азеотропной смеси с минимумом температуры кипения:

 < 0 3.11

Аналогично для энтропии (рис. 3.4):

 < 0 3.12

Частные энтропийные фазовые эффекты паровой фазы показаны на

рисунке 3.4.

В случае азеотропа с максимумом температуры кипения (рисунок 3.5 – 3.8) частные фазовые эффекты в случае азеотропного состава соответственно равны

  

  

и  3.13

  

Для систем с максимумом температуры кипения изотермо-изобары имеют минимум объема (энтропии), то есть, обращены в обеих фазах выпуклостью вниз. Для определения фазовых эффектов в жидкой фазе используются конноды, проекции которых дают ноды, ориентированные от жидкости к пару. Снова будем рассматривать две области до и после точки азеотропа. В области до точки азеотропа (рис. 3.5):

 Vп-Vж > 0, y1-x1 < 0, < 0

 > 0

В этом случае имеем частный объемный фазовый эффект

 > 0 3.14

после точки азеотропа

 Vп - Vж > 0, y1-x1 > 0,  > 0

 > 0 3.15

Таким образом, получаем частный объемный фазовый эффект в случае бинарной азеотропной смеси с максимумом температуры кипения

 > 0 3.16


Аналогично в случае энтропии (рис. 3.7)

  > 0 3.17

Теперь рассмотрим систему относительно паровой фазы (рис 3.6). В области до точки азеотропа получаем:

 Vж-Vп < 0, x1-y1 > 0,  < 0

 < 0

  < 0 3.18

В области после точки азеотропа

 Vж-Vп < 0, x1-y1 < 0, > 0

 < 0

  < 0 3.19

Аналогично в случае энтропии (рис. 3.8):

  < 0 3.20


3.2. Фазовые эффекты и уравнение Ван-дер-Ваальса для гетероазеотропных смесей.

На рисунках 3.10 – 3.13 редставлены диаграммы объем – состав фаз и энтропия – состав фаз гетероазеотропных бинарных смесей. В этих смесях в треугольнике расслоения наблюдается следующая закономерность

 

При этом уравнения Ван-дер-Ваальса выглядят следующим образом

 3.21

 3.22

 3.23

Из этих трех уравнений два независимы. При постоянном давлении имеем:

  3.24

  3.25

или

  3.26

  3.27

Аналогичные уравнения можно получить для паровой фазы. В этом случае при Р = const

  3.28

  3.29

  3.30

Следовательно, получаем

  3.31

  3.32


3.3. Уравнение Ван-дер-Ваальса в терминах общих и частных фазовых эффектов.


Используя общие и частные фаэовые эффекты можно представить уравнение Ван-дер-Ваальса в форме:

для жидкой фазы  3.33

  3.34

для паровой фазы  3.35

  3.36

В азеотропных точках  3.37

 

, , ,  3.38

4.                Заключение.


1.                       Определены частные фазовые эффекты для бинарных азеотропных смесей при постоянных давлении и температуре.

2.                       Определены общие и частные фазовые эффекты в азеотропной точке, а также слева и справа от азеотропного состава.

3.                       Представлено уравнение Ван-дер-Ваальса в терминах общих и частных фазовых эффектов.

Список использованной литературы:


1.                 Сторонкин А.В. Термодинамика гетерогенных систем. Изд. ЛГУ. 1967г.

 ч.1и 2. 448с.

2.                 Серафимов Л.А., Фролкова А.К. Общие закономерности классификации бинарных жидких растворов в терминах избыточных термодинамических функций. АО Росвузнаука 1992г. 40с.

3.                 Серафимов Л.А., Фролкова А.К., Раева В.М. Термодинамический анализ пространства избыточных функций смешения бинарных растворов.//ТОХТ – 1996. Т. 30, №6. С.611-617.

4.                 Findley A. The phase rule and its applications, seventh edition. Longmans, green and Co, London, New York, Toronto 1931. Перевод Раковского А.В. ОНТИ 1935г.

5.                 Палатник Л.С., Ландау А.И.. Фазовые равновесия в многокомпонентных системах. Изд. Харьковского университета 1961г. 407с.

6.                 Биттрих Г.И., Гайле А.А., Лемпе Д., Проскуряков В.А., Семенов Л.В. Разделение углеводородов с использованием селективных растворителей. Химия 1987г. 192с.

7.                 Коган В.Б. Гетерогенные равновесия. Химия Л.:1968г. 432с.

8.                 Пригожин И.Р., Дефэй. Химическая термодинамика. Наука. Новосибирск. 1966 г. 510с.

9.                 Партингтон Д.Р., Раковский А.В. Курс химической термодинамики. Пер. с англ. Герасимова Я.И. Издание второе.1932г. Гос. науч. техн. изд-во. 384с.

10.            Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. Наука 1976г. 504с.

11.            Касаткин А.Г. Основные процессы и аппараты химической технологии. Химия 1971г., 784с.

12.            Древинг В.П., Калашников П.А. Правило фаз с изложением основ термодинамики. Изд. МГУ 1964г. 456с.

13.            Гиббс Д.В. Термодинамика, статистическая механика. Наука. М. 1982г. 584с.

14.            Мюнстер А. Химическая термодинамика. Пер. с нем. под ред. Герасимова Я.Ч. Мир 1971. 296с.

15.            Серафимов Л.А. Преобразование Лежандра и его роль в химической технологии. //Ученые записки МИТХТ 2001г., в. 3. С.4-12

16.            Львов С.В. Рукопись лекций по технологии Основного органического синтеза. 1956г. 105с.

17.            Гельперин Н.И. Дистилляция и ректификация. Госхимиздат. 1947 г. 312с.

18.            Кириллин В.А., Шейндлин. Термодинамика растворов. Госэнергоиздат. 1980 г. 288 с.

Обозначения.


Vп

Мольный объем паровой фазы

Мольный объем жидкой фазы

Sп

Мольная энтропия паровой фазы

Мольная энтропия жидкой фазы

yi

Концентрация компонента i в паровой фазе

xi

Концентрация компонента i в жидкой фазе

Состав паровой фазы, вектор

Состав жидкой фазы, вектор

Химический потенциал компонента i

Энтальпия смешения

Энтропия смешения

Изобарно-изотермический потенциал смешения

R

Газовая постоянная

P

Давление

T

Температура

m

Число молей

Ki

Коэффициент равномерного распределения компонента i между паровой и жидкой фазами

t

Параметр, равный d lnm

Вектор нода

Вектор ренода

Вектор состояния паровой фазы

Вектор состояния жидкой фазы

Общий фазовый эффект в паровой фазе компонента i

Общий фазовый эффект в жидкой фазе компонента i

Частный объемный фазовый эффект в паровой фазе

Частный объемный фазовый эффект в жидкой фазе

Частный энтропийный фазовый эффект в паровой фазе

Частный энтропийный фазовый эффект в жидкой фазе



Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.