Изготовление суспензий в РПО ГУП "Волгофарм"
Содержание
Введение….………………………………………………………………………..1
Требования ГФ предъявляемые к
суспензиям….…………………………….....4
Устойчивость суспензионных препаратов
при хранении……………………...5
Технология производства суспензий……………………………………………7
Технология изготовления суспензий
дисперсионным методом……………....8
Технологические стадии изготовления
суспензий дисперсионным методом..9
Эффект Рибендера….……………………………………………………………..9
Применение эффекта Рибендера в
технологии суспензий
гидрофильных веществ……………..…………………………………………..10
Технология суспензий гидрофобных
веществ
с резко и нерезко выраженными
свойствами…………………………………11
Технология изготовления суспензий
конденсационным методом…………..12
Оценка качества суспензий……………………………………………………..13
Экспериментальная часть………………………………………………….……14
Технология некоторых суспензионных
лекарственных форм………………..14
Выводы и предложения………………………………………………………....21
Перспективные стабилизаторы в технологии
суспензий……………………..22
Заключение……………………………………………………………………....24
Литература
Введение
Суспензионные
лекарственные формы в дисперсологической классификации лекарственных форм
относят к свободнодисперсным системам с жидкой дисперсионной средой. В
коллоидной химии понятие дисперсности включает широкую область размеров частиц:
от больших, чем молекулы, до видимых невооруженным глазом, т.е. от 10-7 до 10-2
см. Системы с размерами частиц менее 10-7 см не относятся к коллоидным системам
и образуют истинные растворы [10]. Высокодисперсные или собственно коллоидные
системы включают частицы размером от 10-7 до 10-4 см (от 1 мкм до 1 нм). В
общем случае, высокодисперсные системы называют золями (от лат. Solutio -
раствор). Грубодисперсные системы носят название суспензий и эмульсий, в
зависимости от характера дисперсной фазы размер их частиц более 1 мкм [4].
Суспензии
представляют собой микрогетерогенные дисперсные системы с
твердой дисперсной фазой и жидкой
дисперсионной средой. Граница раздела фаз в таких системах видна невооруженным
глазом. Размеры частиц в суспензиях не превышают 100 мкм. В фармацевтических
суспензиях размер частиц колеблется в пределах 30-50 мкм. В ГФ XI представлены
общие статьи, описывающие суспензии (Suspensiones) [1].
Суспензии образуются в следующих
случаях:
а) прописаны лекарственные вещества,
не растворимые в жидкой дисперсионной среде (воде), например сера, камфора;
б) завышен предел растворимости
веществ, например, в воде – кислота борная в концентрации более 5%, натрия
гидрокарбонат – более 8%;
в) назначены лекарственные вещества,
порознь растворимые, но образующие при взаимодействии нерастворимые соединения,
например при взаимодействии кальция хлорида с кислотой глицирризиновой в
растворе эликсира грудного – в осадке образуется кальциевая соль
глицирризиновой кислоты;
г) в результате замены растворителя,
например добавление в микстуры экстракционных препаратов или спирта;[10]
С точки зрения
биофармации, суспензии как лекарственная форма, имеют преимущества по сравнению
с другими лекарственными формами, вследствие реализации ряда фармацевтических
факторов, таких как: физическое состояние лекарственного вещества,
вспомогательные вещества и другие. Физическое состояние лекарственного
вещества, в частности, степень его измельчения и вспомогательные вещества
влияют на скорость растворения, биодоступность, метаболизм лекарственных
веществ.
В лекарственных
веществах в форме суспензий лекарственные вещества находятся в сильно измельченном
виде и в присутствии ряда вспомогательных веществ, что дает суспензиям ряд
преимуществ по сравнению с другими лекарственными формами (порошками и
таблетками):
- введение нерастворимых веществ в
мелкодисперсном состоянии в жидкую дисперсионную среду дает возможность
получить большую поверхность твердой фазы и обеспечить тем самым лучший
терапевтический эффект. Например, сульфадиметоксин микронизированный (3-12
мкм), вводимый животным в виде 2% водной суспензии из расчета 500 мг/кг,
всасывался в кровь значительно быстрее по сравнению с лекарственным веществом,
отвечающем требованиям нормативно-технической документации. Его максимальная
концентрация через 1-2 ч составляла 18,5-21,9 мг/л, в то время как в
контрольной группе максимальный уровень сульфадиметоксина в крови достигался
через 4 ч и составлял 5 мг/л.
- лекарственные вещества в форме
суспензий обладают, как правило, пролонгированным действием по сравнению с
растворами. В качестве примера можно привести такой лекарственный препарат, как
суспензия цинк-инсулина. Этот препарат оказывает фармакологический эффект в
течение 24-36 ч по сравнению с растворами инсулина, действие которых заметно
только в течение не более 6 ч.
- в некоторых случаях при назначении
лекарственных веществ в форме суспензий снижается отрицательное воздействие
желудочного сока на лекарственные вещества [6].
Суспензии –
мутные системы не только не только при боковом освещении, но и в проходящем
свете. Для них характерен конус Тиндаля. Для технологии это свойство важно с
точки зрения внешнего вида и оценки какчества лекарственных форм, которые
представляют собой мутные, непрозрачные системы. Осмотическое давление в них
отсутсвует, броуновское движение выражено слабо, диффузия не обнаруживается. От
наличия броуновского движения зависит устойчивость системы. Суспензии –
неустойчивые гетерогенные системы [10].
Требования ГФ предъявляемые к суспензиям
Суспензии
— жидкая лекарственная форма, содержащая в качестве
дисперсной фазы одно или несколько измельченных порошкообразных
лекарственных веществ, распределенных в жидкой дисперсионной среде.
Различают суспензии для внутреннего, наружного и парентерального
применения. Суспензии для парантерального применения вводят только
внутримышечно. Они должны соответствовать статье «Инъекции», если нет других
указаний в частных статьях.
Суспензии могут быть готовыми к применению, а также в виде
порошков или гранул для суспензий, к которым перед применением прибавляют воду или другую подходящую жидкость; количество
воды или другой жидкости должно быть указано в частных статьях.
В качестве вспомогательных используют вещества, увеличивающие вязкость дисперсионной среды,
поверхностно-активные и буферные вещества, корригенты, консерванты,
антиокислители, красители и другие,
разрешенные к медицинскому применению. Перечень вспомогательных веществ
должен быть указан в частных статьях. Не допускается изготовление суспензий,
содержащих ядовитые вещества.
Отклонение в содержании действующих веществ в 1 г (мл)
суспензии не должно превышать±10%.
Перед употреблением суспензии взбалтывают в течение 1—2 мин,
при этом должно наблюдаться равномерное распределение частиц твердой фазы в
жидкой дисперсионной среде. Время седиментационной
устойчивости суспензии или размер частиц твердой фазы должны быть
указаны в частных статьях.
Маркировка. Для суспензий, полученных из порошков или гранул, должны быть указаны
условия и время хранения после прибавления воды. Все виды суспензий должны
иметь указание: «Перед употреблением взбалтывать».
Упаковка. С
соответствующим дозирующим устройством.
Хранение. В
упаковке, обеспечивающей стабильность при хранении и транспортировании и, если
необходимо, в прохладном месте [2].
Устойчивость суспензионных препаратов при хранении
Суспензии, как и
другие гетерогенные системы, характеризуются кинетической (седиментационной) и
агрегативной (конденсационной) неустойчивостью.
Кинетическая (седиментационная)
устойчивость это способность дисперсной системы сохранять равномерное
распределение частиц по всему объему дисперсной фазы. Суспензии являются
кинетически неустойчивыми системами. Частицы суспензий по сравнению с истинными
и коллоидными растворами имеют довольно крупные размеры, которые под воздействием
силы тяжести обладают способностью к седиментации, т.е. опускаются на дно или
всплывают, в зависимости от относительной плотности дисперсной фазы и
дисперсионной среды [5].
Кинетическая
устойчивость в дисперсных системах характеризуется законом Стокса:
υ
=2r²g(d1 – d2) ⁄ 9η ,
где υ
- скорость оседания частиц, м/с; r - радиус частиц, м; d1 - плотность
дисперсной фазы, г/м3; d2 - плотность среды, г/м3; η - вязкость среды,
Па·с; g - ускорение свободного падения, м/с2.
Закон Стокса
применим для монодисперсных систем, в которых частицы имеют сферическую форму.
В суспензиях, где частицы не имеют сферической формы и процесс седиментации
более сложен, закон Стокса описывает процесс седиментации лишь в приближенном
виде. Исходя из формулы Стокса, скорость седиментации прямо пропорциональна
квадрату радиуса частиц, разности плотностей фазы и среды, а также обратно
пропорциональна вязкости среды [10].
Следовательно,
для уменьшения скорости седиментации, т.е. для повышения седиментационной
устойчивости суспензии можно использовать следующие методы:
-выбор дисперсионной среды с
плотностью, равной или близкой к плотности лекарственного вещества;
-уменьшение размеров частиц за счет
более тонкого измельчения лекарственного вещества;
-выбор дисперсионной среды с высокой
вязкостью.
Обычно для повышения
седиментационной устойчивости суспензий используется второй метод уменьшение
размеров частиц лекарственного вещества за счет более тонкого его измельчения. Малый
размер частиц лекарственного вещества обусловливает их большую удельную
поверхность, что приводит к увеличению свободной поверхностной энергии.
Измельчение частиц до бесконечно малых размеров невозможно (2-ой закон
термодинамики). Из следствия этого закона, свободная поверхностная энергия
частицы стремится к минимуму. Уменьшение свободной поверхностной энергии может
происходить за счет агрегации (слипания, объединения) частиц.
Агрегативная (конденсационная)
устойчивость это способность частиц дисперсной фазы противостоять агрегации
(слипанию). Агрегационная устойчивость частиц обеспечивается наличием на их
поверхности электрического заряда (вследствие диссоциации, адсорбции ионов и
пр.).
Препятствуют агрегации также наличие на
частицах оболочки из ВМС, ПАВ, сольватной оболочки.
При большом
запасе поверхностной энергии в суспензиях может происходить процесс флокуляции
(осаждения дисперсной фазы в виде конгломератов - флокул), при котором
вследствие уменьшения агрегативной устойчивости уменьшается кинетическая
устойчивость суспензии. Восстановить дисперсную систему в таком случае удается
путем взбалтывания. Флокулы по своей физико-химической структуре могут быть
аморфные (плотные, творожистые, хлопьевидные, волокнистые) и кристаллические. В
последнем случае восстановить дисперсную систему взбалтыванием не удается. Для
повышения агрегативной устойчивости суспензий необходимо обеспечить наличие на
поверхности частиц лекарственного вещества электрических зарядов, что
достигается добавлением в суспензию вспомогательных веществ. В качестве
вспомогательных веществ при получении суспензий (стабилизаторов) используются
высокомолекулярные вещества (ВМС), поверхностно-активные вещества и др.
Механизм
стабилизирующего действия ПАВ и ВМС заключается в том, что они адсорбируются на
поверхности твердых частиц лекарственного вещества и, вследствие дифильности
ПАВ (т.е. наличия полярной и неполярной частей в молекуле) и наличия диполей
(положительного и отрицательного заряда) в молекуле ВМС. Молекулы стабилизатора
ориентируются на границе раздела фаз таким образом, что своей полярной (или
заряженной) частью они обращены к полярной фазе, а неполярной частью к
неполярной, образуя, таким образом, на границе раздела фаз мономолекулярный
слой. Вокруг этого слоя ориентируются молекулы воды, образуя гидратную
оболочку, при этом снижаются силы поверхностного натяжения на границе раздела
фаз, что ведет к повышению агрегативной устойчивости суспензии [1].
Для повышения
устойчивости при хранении изготавливаемых в условиях заводского производства
суспензий, таким образом, можно использовать два способа: максимальное
измельчение лекарственного вещества и введение специально подобранных
вспомогательных веществ (стабилизаторов) [5].
Технология производства суспензий
Существует два
метода получения суспензий: дисперсионный и конденсационный. Дисперсионный
способ получения суспензий основан на измельчении частиц лекарственного
вещества механическими способами, с
помощью ультразвука и другими. При
получении суспензии дисперсионным методом учитывают степень гидрофильности или
гидрофобности лекарственного вещества, вводимого в состав суспензии.
Конденсационный способ получения суспензий основан на замене растворителя; при
этом к дисперсионной среде, в которой лекарственное вещество нерастворимо,
добавляют раствор лекарственного вещества в растворителе, который смешивается с
дисперсионной средой [10].
Получение
суспензий в условиях заводского производства осуществляется различными
способами: интенсивным механическим перемешиванием с помощью быстроходных
мешалок и роторно-пульсационных аппаратов; размолом твердой фазы в жидкой среде
на коллоидных мельницах; ультразвуковым диспергированием с использованием
магнитострикционных и электрострикционных излучателей;[1]
конденсационным способом.
Конденсационный
метод получения суспензий очень часто применяется в условиях аптечного
производства [10].
Технология изготовления суспензий дисперсионным методом
При изготовлении суспензий
дисперсионным методом наиболее пристальное
внимание относят к измельчению
лекарственного вещества, так как именно этот фактор в наибольшей степени влияет
на устойчивость образующейся суспензии. При изготовлении суспензии этим методом
лекарственное вещество (твердая фаза) предварительно измельчают до
мелкодисперсного состояния. Для «сухих» суспензий, представляющих собой смесь
лекарственного и вспомогательных веществ, образующих суспензию после добавления
воды (в аптечных или домашних условиях), каждый ингредиент измельчают отдельно
и просеивают через тонкое сито. После смешения ингредиентов во избежание
расслоения смесь вновь просеивают [5].
Технологические стадии изготовления суспензий дисперсионным методом
Как правило, в
состав суспензий, помимо лекарственного вещества, нерастворимого в
дисперсионной среде, входят также вещества, в ней растворимые. Поэтому для
стадий технологического процесса, характерных для технологии суспензий, следует
учитывать стадии изготовления водных и неводных растворов растворение и
процеживание. На основании инструкций по использованию массо-объемных методов
при изготовлении суспензий, содержащих лекарственные вещества в концентрации
более 4%, их готовят по массе. Общая технология суспензий, изготовляемых
дисперсионным методом, включает следующие стадии: взвешивание, измельчение,
смешивание, упаковка [1].
Эффект
Ребиндера
Ребиндера эффект, эффект
адсорбционного понижения прочности твёрдых тел, облегчение деформации и разрушения
твёрдых тел вследствие обратимого физико-химического воздействия среды. Открыт
П. А. Ребиндером (1928) при изучении механических свойств кристаллов кальцита и
каменной соли. Возможен при контакте твёрдого тела, находящегося в напряжённом
состоянии, с жидкой (или газовой) адсорбционно-активной средой. Эффект
Ребиндера весьма универсален — наблюдается в твёрдых металлах, ионных,
ковалентных и молекулярных моно- и поликристаллических телах, стеклах и
полимерах, частично закристаллизованных и аморфных, пористых и сплошных.
Основное условие проявления Ребиндера эффекта — родственный характер
контактирующих фаз (твёрдого тела и среды) по химическому составу и строению.
Форма и степень проявления Ребиндера эффект зависят от интенсивности межатомных
(межмолекулярных) взаимодействий соприкасающихся фаз, величины и типа
напряжений (необходимы растягивающие напряжения), скорости деформации,
температуры. Существенную роль играет реальная структура тела — наличие
дислокаций, трещин, посторонних включений и др. Характерная форма проявления
Ребиндера эффект — многократное падение прочности, повышение хрупкости твёрдого
тела, снижение его долговечности. Так, смоченная ртутью цинковая пластина под
нагрузкой не гнётся, а хрупко разрушается. Другая форма проявления Ребиндера
эффект — пластифицирующее действие среды на твёрдые материалы, например воды на
гипс, органических поверхностно-активных веществ на металлы и др.
Страницы: 1, 2
|