Изменения углеводов и белков
Введение
Дисциплина "Технология приготовления пищи"
является профилирующей при подготовке специалистов – технологов общественного
питания.
Как известно, слово "технология"
объединяет два понятия: tehne – искусство, ремесло,
logos – учение, знание. Поэтому технологию
следует рассматривать как науку о средствах и способах обработки материалов.
Основная задача дисциплины – изучение
процессов производства продукции общественного питания. Общественное питание
представляет собой отрасль народного хозяйства, основу которой составляют предприятия,
характеризующиеся единством форм организации производства и обслуживания
потребителей и различающиеся по типам, специализации. Развитие общественного
питания дает существенную экономию общественного труда вследствие более
рационального использования техники, сырья, материалов. Предоставляет рабочим и
служащим в течение рабочего дня горячую пищу, что повышает их
работоспособность, сохраняет здоровье. Дает возможность организации
сбалансированного рационального питания в детских и учебных заведения.
Успешная деятельность предприятия (фирмы)
определяется качеством производимых услуг, которые должны: четко отвечать
определенным потребностям, удовлетворять требования потребителя,
соответствовать применяемым стандартам и техническим условиям, отвечать действующему
законодательству и другим требованиям общества, предоставляться потребителю по
конкурентоспособным ценам, обеспечить получение прибыли.
Для достижения поставленных целей предприятие
должно учитывать все технические, административные и человеческие факторы,
влияющие на качество продукции и ее безопасность.
Повышение эффективности общественного питания
основывается на общих для всего народного хозяйства, принципах интенсификации
производства – достижение высоких результатов при наименьших затратах
материальных и трудовых ресурсов.
Создание необходимых условий для
удовлетворения потребностей людей в полноценном питании по месту работы, учебы,
жительства и отдыха, повышение качества обслуживания и предоставление
дополнительных услуг предприятиями общественного питания – важнейшие
социально-экономические задачи государства.
1. Изменения углеводов и белков при приготовлении отделочных
полуфабрикатов
1.1 Изменение углеводов
В пищевых продуктах содержатся моносахариды
(глюкоза, фруктоза), олигосахариды (ди- и трисахароза - мальтоза, лактоза и
др.), полисахариды (крахмал, целлюлоза, гемицеллюлозы, гликоген) и близкие к
углеводам пектиновые вещества. Изменения сахаров. В процессе изготовления
различных кулинарных изделий часть содержащихся в них Сахаров расщепляется. В
одних случаях расщепление ограничивается гидролизом дисахаридов, в других - происходит
более глубокий распад Сахаров (процессы брожения, карамелизации,
меланоидинообразования).
Гидролиз дисахаридов. Дисахариды гидролизуются
под действием как кислот, так и ферментов. Кислотный гидролиз имеет место в
таких технологических процессах, как варка плодов и ягод в растворах сахара
различной концентрации (приготовление компотов, киселей, фруктовоягодных
начинок), запекание яблок, уваривание сахара с какой-либо пищевой кислотой
(приготовление помадок). Сахароза в водных растворах под влиянием кислот
присоединяет молекулу воды и расщепляется на равные количества глюкозы и
фруктозы (инверсия сахарозы). Образующийся инвертный сахар хорошо усваивается
организмом, обладает высокой гигроскопичностью и способностью задерживать
кристаллизацию сахарозы. Если сладость сахарозы принять за 100%, то для
глюкозы этот показатель составит 74%, а для фруктозы 173%. Поэтому следствием
инверсии является некоторое повышение сладости сиропа или готовых изделий.
Степень инверсии сахарозы зависит от вида кислоты, ее концентрации,
продолжительности нагрева. Органические кислоты по инверсионной способности
можно расположить в следующем порядке: щавелевая, лимонная, яблочная и уксусная.
В кулинарной практике, как правило, используют уксусную и лимонную кислоты,
первая слабее щавелевой кислоты в 50, вторая в 11 раз. Ферментативному
гидролизу подвергаются сахароза и мальтоза при брожении и в начальный период
выпечки дрожжевого теста. Сахароза под воздействием фермента сахаразы
расщепляется на глюкозу и фруктозу, а мальтоза под действием фермента мальтазы
- до двух молекул глюкозы. Оба фермента содержатся в дрожжах. Сахароза
добавляется в тесто в соответствии с его рецептурой, мальтоза образуется в
процессе гидролиза из крахмала. Накапливающиеся моносахариды участвуют в
разрыхлении дрожжевого теста.
1.1.1 Брожение
Глубокому распаду подвергаются сахара при
брожении дрожжевого теста. Под действием ферментов дрожжей сахара превращаются
в спирт и углекислый газ, последний разрыхляет тесто. Кроме того, под
действием молочно-кислых бактерий сахара в тесте превращаются в молочную
кислоту, которая задерживает развитие гнилостных процессов и способствует
набуханию белков клейковины.
1.1.2 Карамелизация
Глубокий распад Сахаров при нагревании их выше
температуры плавления с образованием темноокрашенных продуктов называется
карамелизацией. Температура плавления фруктозы 98-102°С, глюкозы - 145-149,
сахарозы - 160-185°С. Происходящие при этом процессы сложны и еще недостаточно
изучены. Они в значительной степени зависят от вида и концентрации сахара,
условий нагревания, рН среды и других факторов. В кулинарной практике чаще
всего приходится иметь дело с карамелизацией сахарозы. При нагревании ее в ходе
технологического процесса в слабокислой или нейтральной среде происходит
частичная инверсия с образованием глюкозы и фруктозы, которые претерпевают
дальнейшие превращения. Например, от молекулы глюкозы может отщепиться одна или
две молекулы воды (дегидратация), а образовавшиеся продукты (ангидриды)
соединиться друг с другом или с молекулой сахарозы. Последующее тепловое
воздействие может привести к выделению третьей молекулы воды с образованием
оксиметилфурфурола, который при дальнейшем нагревании может распадаться с
образованием муравьиной и левулиновой кислот или образовывать окрашенные
соединения. Окрашенные соединения представляют собой смесь веществ различной
степени полимеризации: карамелана (вещество светло-соломенного цвета,
растворяющееся в холодной воде), карамелена (вещество нрко-коричневого цвета с
рубиновым оттенком, растворяющееся и в холодной, и в кипящей воде), карамелина
(вещество темно-коричневого цвета, растворяющееся только в кипящей поде) и др.,
превращающуюся в некристаллизующуюся массу (жженку). Жженку используют в
качестве пищевого красителя. Карамелизация Сахаров происходит при подпекании
лука и моркови для бульонов, при запекании яблок, при приготовлении многих
кондитерских изделий и сладких блюд.
1.1.3 Меланоидинообразование
Под меланоидинообразованием понимают
взаимодействие восстанавливающих сахаров (моносахариды и восстанавливающие
дисахариды, как содержащиеся в самом продукте, так и образующиеся при гидролизе
более сложных углеводов) с аминокислотами, пептидами и белками, приводящее к
образованию темноокрашенных продуктов - меланоидинов (от гр. melanos - темный). Этот процесс называют также реакцией Майара, по имени
ученого, который в 1912 г. впервые его описал. Реакция меланоидинообразования
имеет большое значение в кулинарной практике. Ее положительная роль состоит в
следующем: она обусловливает образование аппетитной корочки на жареных,
запеченных блюдах из мяса, птицы, рыбы, выпечных изделиях из теста; побочные
продукты этой реакции участвуют в образовании вкуса и аромата готовых блюд.
Отрицательная роль реакции меланоидинообразования заключается в том, что она
вызывает потемнение фритюрного жира, фруктовых пюре, некоторых овощей; снижает
биологическую ценность белков, поскольку связываются аминокислоты. В реакцию
меланоидинообразования особенно легко вступают такие аминокислоты, как лизин,
метионин, которых чаще всего недостает в растительных белках. После соединения
с сахарами эти кислоты становятся недоступными для пищеварительных ферментов и
не всасываются в желудочно-кишечном тракте. В кулинарной практике часто
нагревают молоко с крупам, овощами. В результате взаимодействия лактозы и
лизина биологическая ценность белков готовых блюд снижается.
1.1.4 Изменения крахмала. Строение крахмального зерна и
свойства крахмальных полисахаридов
В значительных количествах крахмал содержится
в крупе, бобовых, муке, макаронных изделиях, картофеле. Находится он в клетках
растительных продуктов в виде крахмальных зерен разной величины и формы. Они
представляют собой сложные биологические образования, в состав которых входят
полисахариды (амилоза и амилопектин) и небольшие количества сопутствующих им
веществ (кислота фосфорная, кремневая др., минеральные элементы и т. д.).
Крахмальное зерно имеет слоистое строение. Слои состоят из частиц крахмальных
полисахаридов, радиально расположенных и образующих зачатки кристаллической
структуры. Благодаря этому крахмальное зерно обладает анизотропностью (двойным
лучепреломлением). Образующие зерно слои неоднородны: устойчивые к нагреванию
чередуются с менее устойчивыми, более плотные – с менее плотными. Наружный слой
более плотный, чем внутренние, и образует оболочку зерна. Все зерно пронизано
порами и благодаря этому способно поглощать влагу. Большинство видов крахмала
содержит 15 - 20% амилозы и 80 - 85% амилопектина. Однако крахмал восковидных
сортов кукурузы, риса и ячменя состоит в основном из амилопектина, а крахмал
некоторых сортов кукурузы и гороха содержит 50 - 75% амилозы.
Молекулы крахмальных полисахаридов состоят из
остатков глюкозы, соединенных друг с другом в длинные цепи. В молекулы амилозы
таких остатков входит в среднем около 1000. Чем длиннее цепи амилозы, тем она
хуже растворяется. В молекулы амилопектина остатков глюкозы входит значительно
больше. Кроме того, в молекулах амилозы цепи прямые, а у амилопектина они
ветвятся. В крахмальном зерне молекулы полисахаридов изогнуты и расположены
слоями. Широкое использование крахмала в кулинарной практике обусловлено
комплексом характерных для него технологических свойств: набуханием и клейстеризацией,
гидролизом, декстринизацией (термическая деструкция).
Набухание и клейстеризация крахмала. Набухание
- одно из важнейших свойств крахмала, которое влияет на консистенцию, форму,
объем и выход готовых изделий.
При нагревании крахмала с водой (крахмальной
суспензии) до температуры 50 - 55°С крахмальные зерна медленно поглощают воду
(до 50% своей массы) и ограниченно набухают. При этом повышения вязкости
суспензии не наблюдается. Набухание это обратимо: после охлаждения и сушки
крахмал практически не изменяется. При нагревании от 55 до 80°С крахмальные
зерна поглощают большое количество воды, увеличиваются в объеме в несколько
раз, теряют кристаллическое строение, а следовательно, анизотропность.
Крахмальная суспензия превращается в клейстер. Процесс его образования
называется клейстеризацией. В небольших количествах крахмал содержится в крупе,
бобовых, муке, макаронных изделиях, картофеле. Находится он в клетках
растительных продуктов в виде крахмальных зерен разной величины и формы. Они
представляют собой сложные биологические образования, в состав которых входят
полисахариды (амилоза и амилопектин) и небольшие количества сопутствующих им
веществ (кислоты фосфорная, кремневая и др., минеральные элементы и т. д.).
Крахмальное зерно имеет слоистое строение (рисунок 1).
Рисунок 1. Изменение структуры водных систем желатина
при нагревании и охлаждении: 1,2 - молекулярно-дисперсная система; 3 -
студень с тройными связями.
Слои состоят из частиц крахмальных
полисахаридов, радиально расположенных и образующих зачатки кристаллической
структуры. Благодаря этому крахмальное зерно обладает анизотропностью (двойным
лучепреломлением). Образующие зерно слои неоднородны: устойчивые к нагреванию
чередуются с менее устойчивыми, более плотные - с менее плотными. Наружный слой
более плотный, чем внутренние, и образует оболочку зерна. Все зерно пронизано
порами и благодаря этому способно поглощать влагу. Таким образом,
клейстеризация - это разрушение нативной структуры крахмального зерна,
сопровождаемое набуханием. Температура, при которой анизотропность большинства
зерен разрушена, называется температурой клейстеризации. Температура
клейстеризации разных видов крахмала неодинакова. Так, клейстеризация
картофельного крахмала наступает при 55-65°С, пшеничного при 60-80, кукурузного
при 60-71, рисового при 70-80°С. Процесс клейстеризации крахмальных зерен идет
поэтапно:
♦ при 55 - 70°С зерна увеличиваются в объеме в несколько раз, теряют
оптическую анизотропность, но еще сохраняют слоистое строение; в центре
крахмального зерна образуется полость ("пузырек"); взвесь зерен в
воде превращается в клейстер - малоконцентрированный золь амилозы, в котором
распределены набухшие зерна (первая стадия клейстеризации);
♦ при нагревании выше 70°С в присутствии значительного количества воды
крахмальные зерна увеличиваются в объеме в десятки раз, слоистая структура
исчезает, значительно повышается вязкость системы (вторая стадия
клейстеризации); на этой стадии увеличивается количество растворимой амилозы;
раствор ее частично остается в зерне, а частично диффундирует в окружающую
среду.
♦ При длительном нагревании с избытком воды крахмальные пузырьки
лопаются, и вязкость клейстера снижается. Примером этого в кулинарной практике
является разжижение киселя в результате чрезмерного нагрева. Крахмал клубневых
растений (картофель, топинамбур) дает прозрачные клейстеры желеобразной
консистенции, а зерновых (кукуруза, рис, пшеница и др.) - непрозрачные, молочно-белые,
пастообразной консистенции.
♦ Консистенция клейстера зависит от количества крахмала: при содержании
его от 2 до 5% клейстер получается жидким (жидкие кисели, соусы, супы-пюре);
при 6-8% - густым (густые кисели). Еще более густой клейстер образуется внутри
клеток картофеля, в кашах, блюдах из макаронных изделий.
♦ На вязкость клейстера влияет не только концентрация крахмала, но и
присутствие различных пищевых веществ (сахаров, минеральных элементов, кислот,
белков и др.). Так, сахароза повышает вязкость системы, соль снижает, белки
оказывают стабилизирующее действие на крахмальные клейстеры. При охлаждении
крахмалосодержащих продуктов количество растворимой амилозы в них снижается в
результате ретроградации (выпадение в осадок). При этом происходит старение
крахмальных студней (синерезис), и изделия черствеют. Скорость старения зависит
от вида изделий, их влажности и температуры хранения. Чем выше влажность блюда,
кулинарного изделия, тем интенсивнее снижается в нем количество водорастворимых
веществ. Наиболее быстро старение протекает в пшенной каше, медленнее - в
манной и гречневой. Повышение температуры тормозит процесс ретроградации,
поэтому блюда из крупы и макаронных изделий, которые хранится на мармитах с
температурой 70 - 80°С, имеют хорошие органолептические показатели в течение 4
ч.
♦ Гидролиз крахмала. Крахмальные полисахариды способны распадаться
до молекул составляющих их сахаров. Процесс называется гидролизом, так как идет
с присоединением воды. Различают ферментативный и кислотный гидролиз. Ферменты,
расщепляющие крахмал, носят название амилаз. Существуют два вида их:
♦ a-амилаза,
которая вызывает частичный распад цепей крахмальных полисахаридов с
образованием низкомолекулярных соединений - декстринов; при продолжительном
гидролизе возможно образование мальтозы и глюкозы;
♦ b-амилаза,
которая расщепляет крахмал до мальтозы. Ферментативный гидролиз крахмала
происходит при изготовлении дрожжевого теста и выпечке изделий из него, варке
картофеля и др.
♦ В пшеничной муке обычно содержится b-амилаза;
мальтоза, образующаяся под ее влиянием, является питательной средой для
дрожжей. В муке из проросшего зерна преобладает a-амилаза,
образующиеся под ее воздействием декстрины придают изделиям липкость,
неприятный вкус. Степень гидролиза крахмала под действием b-амилазы
увеличивается с повышением температуры теста при замесе и в начальный период
выпечки, с увеличением продолжительности замеса. Кроме того, она зависит от
крупности помола муки и степени повреждения крахмальных зерен. Чем больше
поврежденных зерен (чем тоньше помол муки), тем быстрее протекает гидролиз (или
ферментативная деструкция) крахмала. В картофеле также содержится b-амилаза,
превращающая крахмал в мальтозу. Мальтоза расходуется на дыхание клубней. При
температуре, близкой к 0°С, дыхание замедляется, мальтоза накапливается, и
картофель становится сладким (подмороженный картофель). При использовании
подмороженный картофель рекомендуется выдержать некоторое время при комнатной
температуре. В этом случае дыхание к ней усиливается, сладковатость их
уменьшается. Активность b-амилазы возрастает интервале от 35
до 40°С, при температуре 65°С фермент разрушается. Поэтому, если картофель:
перед варкой залить холодной водой, то пока клубни прогреваются, значительная
часть крахмала успеет превратиться в мальтозу и перейти в отвар, и потери
питательных веществ увеличивается. Если же картофель залить кипящей водой, то (амилаза
инактивируется и потери питательных веществ будут меньше).
Страницы: 1, 2, 3, 4, 5, 6
|