Меню
Поиск



рефераты скачать Закаливание растений

Находятся ли корни в состоянии стресса, можно легко понять, осматривая макроскопическую величину – зону растяжения корней . Установлено, что при снижении температуры с +8°С до +2°С длина зоны растяжения, как у плевела, так и у, почти не меняется, а у овсяницы луговой зона растяжения значительно укорачивается и становится намного меньше, чем у плевела и. При понижении температуры длина полностью выросшей клетки почти не меняется, и длина зоны растяжения корней  становится прямо пропорциональна скорости деления клеток  и обратно пропорциональна относительной скорости растяжения клеток. При снижении температуры от +8°С до +2°С у овсяницы луговой относительная скорость растяжения клеток  уменьшается сравнительно незначительно (снижение растяжения связано с температурой), а уменьшение скорости деления клеток  является достаточно большим и обуславливается не только физико-химическим воздействием низкой температуры, но и качественной реакцией меристемы на этот стрессор. Таким образом, значительное снижение скорости деления клеток , которое проявляется у меристематических клеток корней овсяницы луговой в состоянии стресса, обуславливает укорачивание зоны растяжения корней. У других исследованных видов уменьшение и  происходит только из-за прямого воздействия низкой температуры, поэтому изменения обоих показателей являются равноценными и компенсируют один другого, потому длина зоны растяжения почти не меняется. Так что укорачивание зоны растяжения является одним из маркёров стрессового состояния. Даже не производя цитилогического анализа, а только пользуясь макроскопическим параметром – длиной зоны растяжения, можно установить, находится ли растение в состоянии стресса и адаптируется ли оно. Надо отметить и практическую пользу этого фактора. Нахождение такого легко наблюдаемого признака, показывающего изменённое биологическое состояние растения, является наглядно полезным при работе с селекционным материалом травянистых растений. Именно оценка зоны растяжения позволила бы селекционерам прогнозировать устойчивость к холоду начального селекционного материала многолетних трав.







2. Холодостойкость растений 

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько выше О 0С. Холодостойкость свойственна растениям умеренной полосы (ячмень, овес, лен, вика и др.). Тропические и субтропические растения повреждаются и отмирают при температурах от 0 до 10 0С (кофе, хлопчатник, огурец и др.). Для большинства же сельскохозяйственных растений низкие положительные температуры негубительны. Связано это с тем, что при охлаждении ферментативный аппарат растений не расстраивается, не снижается устойчивость к грибным заболеваниям и вообще не происходит заметных повреждений растений.
Степень холодостойкости разных растений неодинакова. Многие растения южных широт повреждаются холодом. При температуре 3 °С повреждаются огурец, хлопчатник, фасоль, кукуруза, баклажан. Устойчивость к холоду у сортов различна. Для характеристики холодостойкости растений используют понятие температурный минимум, при котором рост растений прекращается. Для большой группы сельскохозяйственных растений его величина составляет 4 °С. Однако многие растения имеют более высокое значение температурного минимума и соответственно они менее устойчивы к воздействию холода.

Накопление зеленой массы кукурузой не происходит при температуре ниже 10 оС. Устойчивость растений к холоду зависит от периода онтогенеза. Разные органы растений также различаются по устойчивости к холоду. Так, цветки растений более чувствительны, чем плоды и листья, а листья и корни чувствительнее стеблей. Наиболее холодостойкими являются растения раннего срока посева.

Для сравнения рассмотрим особенности прорастания малоустойчивой к холоду кукурузы. При температуре 18-20 оС всходы у кукурузы появляются на 4-й день, а при 10-12 "С - только на 12-й день. О холодостойкости растений косвенно можно судить по показателю суммы биологических температур. Чем меньше эта величина, тем быстрее растения созревают и тем выше их устойчивость к холоду. Показатели суммы биологических температур соответствуют скороспелости растений: очень раннеспелые имеют сумму биологических температур 1200 оС, раннеспелые - 1200-1600, среднераннеспелые – 1600 - 2200, среднеспелые – 2200 - 2800, среднепозднеспелые – 2800 - 3400, позднеспелые – 3400 - 4000 оС.
Физиолого-биохимические изменения у теплолюбивых растений при пониженных положительных температурах.

Повреждение растений холодом сопровождается потерей ими тургора и изменением окраски (из-за разрушения хлорофилла), что является следствием нарушения транспорта воды к транспирирующим органам. Кроме того, наблюдаются значительные нарушения физиологических функций, которые связаны с нарушением обмена нуклеиновых кислот и белков. Нарушается цепь ДНК -> РНК -> белок -> признак.

У некоторых видов растений наблюдаются усиление распада белков и накопление в тканях растворимых форм азота. Из-за изменения структуры митохондрий и пластид аэробное дыхание и фотосинтез снижаются. Деградация хлоропластов, разрушение нормальной структуры пигментно-липидного комплекса приводят к подавлению функции запасания энергии этими органоидами, что способствует нарушению энергетического обмена растения в целом. Основной причиной повреждающего действия низкой температуры на теплолюбивые растения является нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в состояние геля, а также общие изменения процессов обмена веществ. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (пада-
ет) осевой градиент потенциалов покоя (ПП), активный транспорт веществ против электрохимического градиента.

Изменение проницаемости мембран приводит к тому, что нарушаются поступление и транспорт веществ в растения и отток ассимилятов, токсичных веществ из клеток. Все эти изменения существенно снижают жизнеспособность растений и могут привести к их гибели. Кроме того, в этих условиях растения более подвержены действию болезней и вредителей, что также приводит к снижению качества и количества урожая.

Приспособление растений к низким положительным температурам.
У растений более холодостойких отмеченные нарушения выражены значительно слабее и не сопровождаются гибелью растения. Устойчивость к низким температурам - генетически детерминированный признак. Изменение уровня физиологических процессов и функций при действии низких положительных температур может служить диагностическим показателем при сравнительной оценке холодостойкости растений (видов, сортов). Холодостойкость растений определяется способностью растений сохранять нормальную структуру цитоплазмы, изменять обмен веществ в период охлаждения и последующего повышения температуры на достаточно высоком уровне.

Для оценки холодостойкости растений используют различные методы диагностики (прямые и косвенные). Это холодный метод проращивания семян, сверхранние посевы в сырую и непрогретую почву, учет интенсивности появления всходов, темпов роста, накопления массы, содержание хлорофилла, соотношение количества электролитов в надземной и подземной частях растения, оценка изменчивости изоферментного состава и др.

1. Минимальные температуры роста вегетативных и генеративных органов различных растений, оС

Способы повышения холодостойкости некоторых растений.
Холодостойкость некоторых теплолюбивых растений можно повысить закаливанием прорастающих семян и рассады, которое стимулирует защитно-приспособительную перестройку метаболизма растений. Наклюнувшиеся семена или рассаду теплолюбивых культур (огурец, томат, дыня и др.) в течение нескольких суток (до месяца) выдерживают при чередующихся (через 12 ч) переменных температурах: от 0 до 5 °С и при 15-20 оС. Холодостойкость ряда растений повышается при замачивании семян в 0,25%-ных растворах микроэлементов.

Повысить холодостойкость растений можно прививкой теплолюбивых растений (арбуз, дыня) на более холодоустойчивые подвои (тыква). Положительное влияние этих приемов связано со стабилизацией энергетического обмена и упрочением структуры клеточных органоидов у обработанных растений. У закаленных растений увеличение вязкости протоплазмы при пониженных температурах происходит медленнее.
Заморозки. Большой ущерб сельскому хозяйству наносят кратковременные или длительные заморозки, отмечаемые в весенний и осенний периоды, а в северных широтах и летом. Заморозки - снижение температуры до небольших отрицательных величин, могут быть во время разных фаз развития конкретных растений. Наиболее опасны летние заморозки, в период наибольшего роста растений. Устойчивость к заморозкам обусловлена видом растения, фазой его развития, физиологическим состоянием, условиями минерального питания, увлажненностью, интенсивностью и продолжительностью заморозков, погодными условиями, предшествующими заморозкам.
Наиболее устойчивы к заморозкам растения раннего срока посева (яровые хлеба, зернобобовые культуры), способные выдерживать в ранние фазы онтогенеза кратковременные весенние заморозки до -7...-10 оС. Растения позднего срока посева развиваются медленнее и не всегда успевают подготовиться к низким температурам. Корнеплоды, большинство масличных культур, лен, конопля переносят понижение температуры до -5...-8 °С, соя, картофель, сорго, кукуруза - до -2...-3, хлопок-до -1,5...-2, бахчевые культуры - до -0,5...-1,5 оС.

Существенную роль в устойчивости к заморозкам играет фаза развития растений. Особенно опасны заморозки в фазе цветение - начало плодоношения. Яровые хлеба в фазе всходов переносят заморозки до -7...-8 оС, в фазе выхода в трубку до -3, а в фазе цветения - только 1-2 оС. Устойчивость растений зависит от образования при заморозках льда в клетках и межклеточниках. Если лед не образуется, то вероятность восстановления растением нормального течения функций возрастает. Поэтому первостепенное значение имеет возможность быстрого транспорта свободной воды из клеток в межклеточники, что определяется
высокой проницаемостью мембран в условиях заморозков. У устойчивых к заморозкам культур при снижении температур в составе липидов клеточных мембран увеличивается содержание ненасыщенных жирных кислот, снижающих температуру фазового перехода липидов из жидкокристаллического состояния в гель до уровня О оС. У неустойчивых растений этот переход имеет место при температурах выше О °С. В целях максимального снижения повреждения растений заморозками необходимо проводить посев их в оптимальные сроки, использовать рассаду овощных и цветочных культур. Защищают от заморозков дымовые завесы и укрытие растений пленкой, дождевание растений перед заморозками или весенний полив. Для вертикального перемещения воздуха около плодовых деревьев используют вентиляторы.


 





































3. Морозоустойчивость растений

Морозоустойчивость - способность растений переносить температуру ниже О °С, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже -20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения переносят условия зимы в различные периоды онтогенеза. У однолетних культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних - клубни, корнеплоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых культур перезимовывать обусловливается их достаточно высокой морозоустойчивостью. Ткани этих растений могут замерзать, однако растения не погибают. Большой вклад в изучение физиологических основ морозоустойчивости внесли Н. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие отечественные исследователи.

Замерзание растительных клеток и тканей и происходящие при этом процессы.
Способность растений переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного и того же растения зависит от условий, предшествующих наступлению морозов, влияющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.
Постепенное снижение температуры со скоростью 0,5-1 °С/ч приводит к образованию кристаллов льда прежде всего в межклеточниках и первоначально не вызывают гибели клеток. Однако последствия этого процесса могут быть губительными для клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки погибают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода. Условия и причины вымерзания растений.
Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится концентрированным, изменяется рН среды. Выкристаллизовавшийся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма подвергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.
Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивании такие растения могут сохранить жизнеспособность. Так, в листьях капусты при температуре -5...-6 оС образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, которая поглощается клетками, и листья возвращаются в нормальное состояние.
Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели клеток растений при низких отрицательных температурах и льдообразовании являются чрезмерное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно. Летальность действия мороза определяется несколькими обстоятельствами. Последствия воздействия низких отрицательных температур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выносить глубокие низкие температуры (до -196 °С). Низкое содержание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой критический предел обезвоживания и сжатия, превышение которого, а не только снижение температуры приводит к их гибели.
Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим поверхностные структуры цитоплазмы, кристаллами льда, нарушающими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.

Действие льда, особенно при длительном влиянии низких
температур, сходно с обезвоживанием клеток при засухе. Признаками повреждения клеток морозом являются потеря ими тур-гора, инфильтрация межклеточников водой и выход ионов из клеток. Выход ионов К+ и Сахаров из клеток, по-видимому, связан с повреждением мембранных систем их активного транспорта. Поврежденные растения при переносе в теплое место имеют вид ошпаренных, утрачивают тургор, листья быстро буреют и засыхают. При оттаивании мороженых клубней картофеля, корнеплодов кормовой и сахарной свеклы вода легко вытекает из тканей. Важно отметить, что состояние переохлаждения (без образования льда) растения переносят без вреда; при тех же температурах, но с образованием льда в тканях растения гибнут.

Растения по-разному реагируют на образование льда в тканях: клубни картофеля и георгина быстро погибают, капуста и лук переносят лишь умеренное промораживание, рожь и пшеница выдерживают на уровне узла кущения морозы до -15...-20 °С. У устойчивых к морозу растений имеются защитные механизмы, в основе которых лежат определенные физико-химические изменения. Морозоустойчивые растения обладают приспособлениями, уменьшающими обезвоживание клеток. При понижении температуры у таких растений отмечаются повышение содержания Сахаров и других веществ, защищающих ткани (криопротек-торы), это прежде всего гидрофильные белки, моно- и олигоса-хариды; снижение оводненности клеток; увеличение количества полярных липидов и снижение насыщенности их жирнокислот-ных остатков; увеличение количества защитных белков.
На степень морозоустойчивости растений большое влияние оказывают сахара, регуляторы роста и другие вещества, образующиеся в клетках. В зимующих растениях в цитоплазме накапливаются сахара, а содержание крахмала снижается. Влияние саха-ров на повышение морозоустойчивости растений многосторонне. Накопление Сахаров предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образующегося льда.

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.