Меню
Поиск



рефераты скачатьЭлектронные словари и их применимость для традиционного машинного перевода

английски смысл "довыпендриваться", даже если знаешь как передать

"выпендриваться"?

- Синтаксические описания. Здесь ситуация наиболее печальна, поскольку в

массовых словарях не существует даже системы понятий, с помощью которой

синтаксическая информация могла бы быть доведена до обычного читателя.

Идея, что за составление предложения ответственна грамматика, изложенная в

справочнике, а словарь обеспечивает перевод отдельных слов, не выдерживает

критики с точки зрения современных представлений о центральной роли слова в

синтаксисе.

Выход из этой печальной ситуации уже указан. Будущее лексикографии за

интегральными словарными описаниями, основанными на формальных моделях,

учитывающих упомянутые научные результаты. На этих же моделях будут

основываться технологии доступа к словарному содержанию.

Глава III. МАШИННЫЙ ПЕРЕВОД

Немного истории.

Осуществление перевода компьютером – сложная, но интересная научная

задача. Основная ее сложность состоит в том, что естественные языки плохо

поддаются формализации. Отсюда и невысокое качество получаемого с помощью

систем МП текста, содержание и форма которого служит неизменным объектом

шуток. Однако идея машинного перевода уходит корнями далеко в прошлое.

Впервые мысль о возможности машинного перевода высказал Чарльз Бэббидж,

разработавший в 1836-1848 гг. проект цифровой аналитической машины. Идея Ч.

Бэббиджа состояла в том, что память объемом 1000 50-разрядных десятичных

чисел (по 50 зубчатых колес в каждом регистре) можно использовать для

хранения словарей. Ч. Бэббидж привел эту идею в качестве обоснования для

запроса у английского правительства средств, необходимых для физического

воплощения аналитической машины, которую ему так и не удалось построить.

А через 100 лет, в 1947 году, У. Уивер (директор отделения естественных

наук Рокфеллеровского фонда) написал письмо Норберту Винеру. В этом письме

он предлагал использовать технику дешифрования для перевода текстов. Этот

год считается годом рождения машинного перевода. В этом же году был

разработан алгоритм осуществления пословного перевода, а в 1948 году Р.

Риченс предложил правило разбиения слова на основу и окончание. В

последующие два десятилетия системы машинного перевода бурно развивались. В

январе 1954 года на машине IBM – 701 была продемонстрирована первая система

машинного перевода IBM Mark II. Но в 1967 году специально созданная

Комиссия Национальной Академии Наук США признала машинный перевод

нерентабельным, что существенно затормозило исследования в этой области.

Новый подъем машинный перевод переживает в 70-е годы, а в 80-е становится

экономически выгодным за счет сравнительной дешевизны машинного времени.

Однако в СССР исследования в области машинного перевода продолжались.

После демонстрации системы IBM Mark II группа ученых ВИНИТИ начала

разработку системы машинного перевода для машины БЭСМ. Первый образец

перевода с английского на русский язык был получен к концу 1955 года.

Другое направление работ возникло в Отделении прикладной математики

Математического института АН СССР (ныне ИПМ им. М. В. Келдыша РАН) по

инициативе А. А. Ляпунова. Первые программы машинного перевода,

разработанные этим коллективом, были реализованы на машине "Стрела".

Благодаря работе над созданием систем МП оформилось такое направление, как

прикладная лингвистика.

В 70-е годы над созданием систем МП трудилась группа разработчиков

ВИНИТИ РАН под руководством проф. Г.Г. Белоногова. Первая их система МП

была разработана в 1993 году, а в 1996 году после ряда доработок была

зарегистрирована в РОСАПО под названием Retrans. Эта система использовалась

министерствами обороны, путей сообщения, науки и технологии.

Параллельные исследования велись в лаборатории Инженерной Лингвистики

ЛГПИ им. А. И. Герцена (ныне Педагогический Университет). Именно они и

легли в основу наиболее популярной сейчас системы МП “PROMT”. Последние

версии этого программного продукта используют наукоемкие технологии и

построены на основе технологии расширенных сетей переходов и формализма

нейронных сетей.

Классификация систем машинного перевода по Лари Чайлду

Новые члены форума по иностранным языкам компании CompuServe зачастую

задают вопрос о том, не мог ли бы кто-нибудь посоветовать им хорошую

программу машинного перевода за умеренную цену.

Ответом на этот вопрос неизменно является "нет". В зависимости от

отвечающего, ответ может содержать два основных аргумента: либо о том, что

машинам перевод не под силу, либо, что машинный перевод стоит слишком

дорого.

Оба эти аргумента в определенной степени справедливы. Однако ответ

далеко не так прост. Изучая проблему машинного перевода (МП), следует

рассмотреть отдельно различные подразделы этой проблемы. Следующее

разделение основано на лекциях Лари Чайлдса, проведенных в рамках

Международной Конференции по Техническим Коммуникациям 1990 года:

- полностью автоматический перевод;

- автоматизированный машинный перевод при участии человека;

- перевод, осуществляемый человеком с использованием компьютера.

Полностью автоматизированный машинный перевод. Этот вид машинного

перевода и подразумевается большинством людей, когда они говорят о машинном

переводе. Смысл здесь прост: в компьютер вводится текст на одном языке,

этот текст обрабатывается и компьютер выводит этот же текст на другом

языке. К сожалению, реализация такого вида автоматического перевода

сталкивается с определенными препятствиями, которые еще предстоит

преодолеть.

Основной проблемой является сложность языка как такового. Возьмем, к

примеру, значения слова "can". Помимо основного значения модального

вспомогательного глагола, у слова "can" имеется несколько официальных и

жаргонных значений в качестве существительного: "банка", "отхожее место",

"тюрьма". Кроме этого, существует архаичное значение этого слова - "знать

или понимать". Если предположить, что у выходного языка для каждого из этих

значений имеется отдельное слово, каким образом может компьютер их

различить?

Как оказалось, определенные успехи были достигнуты в сфере разработки

программ перевода, различающих смысл основываясь на контексте. Более

поздние исследования при анализе текстов опираются больше на теории

вероятности. Тем не менее, полностью автоматизированный машинный перевод

текстов с обширной тематикой все еще является невыполнимой задачей.

Автоматизированный машинный перевод при участии человека. Этот вид

машинного перевода теперь вполне осуществим. Говоря о машинном переводе при

участии человека, обычно подразумевают редактирование текстов как до, так и

после их обработки компьютером. Люди-переводчики изменяют тексты так, чтобы

они были понятны машинам. После того, как компьютер сделал перевод, люди

опять-таки редактируют грубый машинный перевод, делая текст на выходном

языке правильным. Помимо такого порядка работы, существуют системы МП, во

время перевода требующие постоянного присутствия человека-переводчика,

помогающего компьютеру делать перевод особенно сложных или неоднозначных

конструкций.

Машинный перевод с помощью человека применим в большей степени к текстам

с ограниченным вокабуляром узко-ограниченной тематики.

Экономичность использования машинного перевода с помощью человека -

вопрос все еще спорный. Сами программы обычно достаточно дорогостоящи, а

для работы некоторых из них требуется специальное оборудование.

Предварительному и последующему редактированию необходимо обучаться, да и

работа эта не из приятных. Создание и поддержание в рабочем состоянии баз

данных слов - процесс трудоемкий и зачастую требует специальных навыков.

Однако для организации, переводящей большие объемы текстов в четко-

определенной тематической сфере, машинный перевод с помощью человека может

оказаться достаточно экономичной альтернативой традиционному человеческому

переводу.

Перевод, осуществляемый человеком с использованием компьютера. При этом

подходе человек-переводчик ставится в центр процесса перевода, в то время

как программа компьютера расценивается в качестве инструмента, делающего

процесс перевода более эффективным, а перевод - точным. Это обычные

электронные словари, которые обеспечивают перевод требуемого слова,

возлагая на человека ответственность за выбор нужного варианта и смысл

переведенного текста. Такие словари значительно облегчают процесс перевода,

но требуют от пользователя определенного знания языка и затрат времени на

его осуществление. И все же сам процесс перевода значительно ускоряется и

облегчается.

Среди систем, помогающих переводчику в работе, важнейшее место занимают

так называемые системы Translation Memory (TM). Системы ТМ представляют

собой интерактивный инструмент для накопления в базе данных пар

эквивалентных сегментов текста на языке оригинала и перевода с возможностью

их последующего поиска и редактирования. Эти программные продукты не имеют

целью применение высокоинтеллектуальных информационных технологий, а

наоборот, основаны на использовании творческого потенциала переводчика.

Переводчик в процессе работы сам формирует базу данных (или же получает ее

от других переводчиков или от заказчика), и чем больше единиц она содержит,

тем больше отдача от ее использования.

Вот список наиболее известных систем ТМ:

- Transit швейцарской фирмы Star,

- Trados (США),

- Translation Manager от IBM,

- Eurolang Optimizer французской фирмы LANT,

- DejaVu от ATRIL (США),

- WordFisher (Венгрия).

Системы ТМ позволяют исключить повторный перевод идентичных фрагментов

текста. Перевод сегмента осуществляется переводчиком только один раз, а

затем каждый следующий сегмент проверяется на совпадение (полное или

нечеткое) с базой данных, и, если найден идентичный или похожий сегмент, то

он предлагается в качестве варианта перевода.

В настоящее время ведутся разработки по усовершенствованию систем ТМ.

Например, ядро системы Transit фирмы Star реализовано на основе технологии

нейронных сетей.

Несмотря на широкий ассортимент систем TM, они имеют несколько общих

функций:

- Функция сопоставления (Alignment). Одно из преимуществ систем ТМ – это

возможность использования уже переведенных материалов по данной тематике.

База данных ТМ может быть получена путем посегментного сопоставления файлов

оригинала и перевода.

- Наличие фильтров импорта – экспорта. Это свойство обеспечивает

совместимость систем ТМ с множеством текстовых процессоров и издательских

систем и дает переводчику относительную независимость от заказчика.

- Механизм поиска нечетких или полных совпадений. Именно этот механизм и

представляет собой основное достоинство систем ТМ. Если при переводе текста

система встречает сегмент, идентичный или близкий к переведенному ранее, то

уже переведенный сегмент предлагается переводчику как вариант перевода

текущего сегмента, который может быть подкорректирован. Степень нечеткого

совпадения задается пользователем.

- Поддержка тематических словарей. Эта функция помогает переводчику

придерживаться глоссария. Как правило, если в переводимом сегменте

встречается слово или словосочетание из тематического словаря, то оно

выделяется цветом и предлагается его перевод, который можно вставить в

переводимый текст автоматически.

- Средства поиска фрагментов текста. Этот инструмент очень удобен при

редактировании перевода. Если в процессе работы был найден более удачный

вариант перевода какого-либо фрагмента текста, то этот фрагмент может быть

найден во всех сегментах ТМ, после чего в сегменты ТМ последовательно

вносятся необходимые изменения.

Конечно, как и любой программный продукт, системы ТМ имеют свои

достоинства и недостатки, и свою область применения. Однако в отношении

систем TM, основным недостатком является их дороговизна.

Особенно удобно использовать системы ТМ при переводе таких документов,

как руководства пользователя, инструкции по эксплуатации, конструкторская и

деловая документация, каталоги продукции и другой однотипной документации с

большим количеством совпадений.

Системы машинного перевода (МП)

В соответствии с указанной выше классификацией, целью данной работы

является исследование и анализ систем МП второй группы, поскольку систем МП

первой группы еще не существует в природе, а системы третьей группы в

сущности не являются системами МП, а более напоминают электронные словари.

Системы МП осуществляют автоматизированный перевод текста. Единицами

перевода при этом служат слова или словосочетания, причем последние

разработки позволяют учитывать морфологию переводимого слова. Развитые

системы МП осуществляют перевод по заданным разработчиком и/или

корректируемым пользователем алгоритмам перевода.

Для осуществления машинного перевода в компьютер вводится специальная

программа, реализующая алгоритм перевода, под которым понимается

последовательность однозначно и строго определенных действий над текстом

для нахождения переводных соответствий в данной паре языков L1 – L2 при

заданном направлении перевода (с одного конкретного языка на другой).

Система машинного перевода включает в себя двуязычные словари, снабженные

необходимой грамматической информацией (морфологической, синтаксической и

семантической) для обеспечения передачи эквивалентных, вариантных и

трансформационных переводных соответствий, а также алгоритмические средства

грамматического анализа, реализующие какую-либо из принятых для

автоматической переработки текста формальных грамматик. Имеются также

отдельные системы машинного перевода, рассчитанные на перевод в рамках трех

и более языков, но они в настоящее время являются экспериментальными.

Наиболее распространенной является следующая последовательность

формальных операций, обеспечивающих анализ и синтез в системе машинного

перевода:

1. На первом этапе осуществляется ввод текста и поиск входных словоформ

(слов в конкретной грамматической форме, например дательного падежа

множественного числа) во входном словаре (словаре языка, с которого

производится перевод) с сопутствующим морфологическим анализом, в ходе

которого устанавливается принадлежность данной словоформы к определенной

лексеме (слову как единице словаря). В процессе анализа из формы слова

могут быть получены также сведения, относящиеся к другим уровням

организации языковой системы.

2. Следующий этап включает в себя перевод идиоматических словосочетаний,

фразеологических единств или штампов данной предметной области (например,

при англо-русском переводе обороты типа in case of, in accordance with

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.