Меню
Поиск



рефераты скачать Двухзеркальная антенна по схеме Кассергена

В прямоугольном волноводе могут распостраняться волны электрических (Emn, m,n=l,2,3,...) и магнитных (Нmn , m,n=l,2,3...) типов. Электромагнитная волна типа Emn (Hmn) распостраняется по волноводу, если выполняется условие:

 (2.17.) для частоты.

 (2.18.) для длины волны

Где:

 (2.19.) ‑ критическая частота волны типа Emn (Hmn)

 (2.20.) ‑ критическая длина волны типа Emn (Hmn)

m, n ‑ индексы, показывающие число вариаций (полуволн) компонентов поля соответственно вдоль осей X и Y.

Волну, обладающую в волноводе заданных размеров а и b  наименьшей критической частотой, называют основной волной. Все остальные волны называются волнами высших типов. Из формул (2.19.), (2.20.) следует, что при a>b основной волной будет волна Н10.

На рисунке 2.4. изображено распределение поля основной волны Н10 в прямоугольном волноводе.

Рис. 2.4. прямоугольный волновод.

Рис. 2.4. Структура поля основной волны Н10  в прямоугольном волноводе (———— линии электрического поля; — — — линии магнитного поля).

Исходя из мощности передатчика в импульсе и частоты генератора линии питания, из таблицы 7.7 [5] с. 186 выберем волновод R-120 со следующими параметрами:

Ø      Номинальные размеры:

а=19,03 мм., b=9,525 мм.;

Ø      Критическая частота волны Н10, fKP= 7,869 ГГц;

Ø      Рабочий диапазон частот 1,25fKP…1,9fKP, для волны Н10=9,84...15,0 ГГц;

Ø      Номинальная рабочая частота 1,5fKP =11,8 ГГц;

Ø      Теоретическое затухание меди на 1,5fKPa=0,133 дБ/м;

Ø      Пробивная мощность РПР =0,201 МВт;

Ø      Номинальная толщина стенки S=1,27 мм.;

Ø      Погонная масса трубы m =0,72 кг.

Для основной волны Н10:

 мм. (2.21.)

 мм.(2.22.)

Следующей по критической частоте в выбранном прямоугольном волноводе будет волна Н20 с (). (2.23.)

Диапазон частот, при которых в волноводе может распространяться только основная волна Н10, задается неравенством:

 (2.24.)

7,877<f<15,754 ГГц.

Следовательно, в выбранном волноводе в одномодовом режиме на заданной частоте 11 ГГц будет распространяется с волна Н10, а другие типы волн на данной частоте в прямоугольном волноводе распространяться не будут.

Возбуждение волны Н11 в круглом волноводе возможно с помощью плавного перехода с постепенной деформацией поперечного сечения от прямоугольного волновода к круглому. Для того, что бы влияние отражения было незначительным, длину такого перехода берут 2×lСВ.

Теперь необходимо выбрать круглый волновод для того чтобы питать облучатель.

Рассчитанный ранее конец стержня конической диэлектрической антенны с наибольшим диаметром поперечного сечения  15,38 мм. и будет приблизительно определять диаметр поперечного сечения круглого волновода.

Выбираем круглый волновод из таблицы 7.14 [5] на с. 193 С‑120 который имеет следующие конструктивные и электрические параметры:

Ø      Критическая частота ГГц колебаний вида:

H11: ‑ 10,0;

Е01: ‑ 13,1;

H21: ‑ 16,7;

H01: ‑ 20,9;

Ø      Внутренний диаметр в мм.:

Номинал – 17,475;

Допуск – 0,017;

Ø      Номинальная толщина стенок в мм. – 1,27.

Ø      Частота в ГГц – 12,07;

Ø      Затухание колебаний вида H11 в дБ/м:

Теоретически рассчитанное – 0,1524;

Ø      Затухание колебаний вида H11 в дБ/м максимальное значение отсутствует в таблице.

Структура поля волны H11  в круглом волноводе имеет вид такой же как на рис. 2.5.

   Рис. 2.5.Структура поля H11 в круглом волноводе

Рис. 2.5. Структура поля H11 в круглом волноводе:(———— линии элек-трического поля; — — — линии магнитного поля.

Электромагнитная волна типа Emn (Hmn) распостраняется по волноводу, если ыполняется условие (2.18.).

Критическая длина волны для волн типа Hmn определяется из соотношения:

 (2.25.)

где ‑ hm n – «n»-ый корень производной функции Бесселя «m»-го –порядка.

Для волн типа Emn:

 (2.26.)

где ‑xmn – «n»-ый корень функции Бесселя «m»-го порядка.

Расчитаем критические длины волн для волн, которые могут распостраняться на частоте 11 ГГц в выбранном круглом волноводе.

Для основной волны H11:

29,298 мм.

Для волны E01

22,88 мм.

Для волны H21:

17,95 мм.

Для волны H01:

14,34 мм.

Волны E01, H21, H01, на зданной частоте распосграняться не будут, так как не выполняется условие (2.18).

Примерный вид конструкции спользуемого для согласования плавного перехода от прямоугольного волновода к круглому изображён на рис. 2.6. и в приложении 4.

Рис. 2.6. Конструкция плавного перехода с прямоугольного волновода с сечением 48´24 мм. на круглый диаметром 70 мм.


3.              электрические характеристики антенны.

3.1.      диаграмма направленности облучателя.


Как было определено ранее, в качестве облучателя зеркальной антенны был выбран конический диэлектрический стержень (он изображён на рис. 2.4., причём в центре осей координат расположен фазовый центр диэлектрической антенны и второй фокус гиперболоида (или малого зеркала), а также угол q = j0, где j0 – угол зрения на край малого рефлектора).

рис. 2.4.

Диаграмма направленности диэлектрической антенны изображённой на рис. 2.4. может быть рассчитана по приближённой формуле:

 (2.27.)

Где угол q отсчитывается от оси диэлектрического стержня, а также:

 ‑ в плоскости  (2.28.)

 ‑ в плоскости  (2.29.)

Ширину главного лепестка диаграммы направленности по уровню половинной мощности приближённо можно рассчитать по формуле:

= 22,72° (2.30.)

Расчётные формулы взяты из [1] на с. 10

Диаграмма направленности  диэлектрической антенны должна получиться такой, чтобы нули главного лепестка приходились на такой угол q, что нулевое излучение диэлектрической антенны приходилось на края гиперболоида.

Рассчитанная диаграмма направленности изображена в приложении 1.

3.2.      поле в раскрыве рефлекторов.

Наиболее просто направленные свойства параболической антенны рассчитываются так называемым апертурным методом, т.е. по полю в её раскрыве.

При установке в фокусе главного рефлектора облучателя с диаграммой направленности FОБЛ (y,a) в раскрыве зеркала наводится синфазное поле с амплитудным распределением и это амплитудное распределение поля можно рассчитать воспользовавшись формулой из [1] на с. 23, которая учитывает, что облучателем параболоида является гиперболоид:

 (2.31.)

При этом координаты точек раскрыва xp, yp, fp, ap связаны с углами y и a соотношениями, обусловленными геометрией задачи (смотрите рис. 2.5.):

 (2.32.)

 (2.33.)

 (2.34.)

 (2.35.)

Рассчитанное по этим формулам амплитудное распределение поля в раскрыве рефлекторов изображено в приложении 2.

3.3              диаграмма направленности и коэффициент усиления всей антенны.

По известному полю в раскрыве рефлекторов рассчитывается F(q, j) по формуле:

 (3.1.)

Где:

 (3.2.);

                      S ‑ поверхность раскрыва;

                      ST – площадь проекции на раскрыв затеняющих элементов.

Коэффициент усиления антенны с учётом апертурного коэффициента исполизования (или КИП), обусловленного амплитудной неравномерностью поля в раскрыве, и коэффициента перехвата мощности облучателя зеркалом gп рассчитывается по формуле:

 (3.3.)

Где:

(3.4.)

Общая эффективность антенны =×gп определяется из соотношения:

 (3.5.)

Все расчётные соотношения  взяты из [1] на с. 23-24.

Рассчитанная диаграмма направленности всей антенны по схеме Кассегрена вместе с параметрами изображена в приложении 3.


4.              конструкция антенны.

С учетом рисунка 4.1. и 4.2., а также рассчитанных ранее размеров рефлекторов в соответствующем пункте 2 предлагается, конструкция антенны (смотрите приложение 5) позволяющая реализовать данную антенну.


Рис. 4.1. Двухзеркальная параболическая антенна по схеме Кассегрена.


а – схема и ход лучей; б – распределение излучающих токов по радиусу.


заключение.

В ходе курсового работы была спроектирована двухзеркальная параболическая антенна по схеме Кассегрена и произведены основные расчеты параметров, характеризующих работу антенны, построены диаграммы направленности всей антенны и облучателя, т.е. стержневой конической диэлектрической антенны.

В процессе проектирования удалось реализовать антенно-фидерное устройство удовлетворяющее исходным данным курсового проекта, а именно обеспечить работу двухзеркальной антенны по схеме Кассегрена на частоте 11 ГГц с шириной ДН Dq по уровню –3 дБ в 1,5 градуса с уровнем боковых лепестков не более –18,3 дБ, коэффициентом усиления 41 дБ и коэффициентом использования поверхности КИП равным 0,704. Все основные рассчитаные данные имеются на рисунке в приложении 6.

Было выяснено, что:

Ø      Ширина диаграммы направленности синфазного раскрыва обратно пропорциональна размеру раскрыва, выраженного в длинах волн, а также зависит от его формы и распределения поля на нём;

Ø      Чем сильнее спадает поле в раскрыве к его краям, тем при тех же размерах антенны больше ширина главного лепестка и ниже уровень боковых лепестков;

Ø      Затенение раскрыва зеркала облучателем, или другими элементами антенны может значительно повысить уровень боковых лепестков  по сравнению с незатенённым раскрывом;

Ø      Фазовый центр облучателя должен совпадать со вторым фокусом гиперболоида и незначительные сдвиги или изменение размеров облучателя сильно влияют на диаграмму направленности и распределение поля в раскрыве главного рефлектора антенны;

Ø      В качестве облучателей параболической антенны по схеме Кассегрена могут использоваться простые слабонаправленные облучатели: рупорные, вибраторные, спиральные, щелевые, полосковые.

Ø      Форма диаграммы направленности облучателя должна соответствовать форме раскрыва главного зеркала. Необходимый спад интенсивности облучения к краям зеркала обусловлен двумя факторами: общей интенсивностью антенны и уровнем боковых лепестков (УБЛ).

Так же в ходе курсового проектирования был лучше изучен и закреплен материал курса СВЧ устройства и антенны и получен ценный практический опыт по расчёту основных параметров двухзеркальной антенны по схеме Кассегрена.


библиографический список.

Литература: [1], [2], [3], [4], [5].

1.                   «Проектирование антенных систем СВЧ: Методические указания и задания к курсовому проекту для студентов всех форм обучения радиотехнических специальностей». Составители: Наймушин М.П., Панченко Б.А., Шабунин С.Н.; Научный редактор проф., д – р. техн. наук Панченко Б.А. Екатеринбург: УГТУ – УПИ, 1993 год 48 с.

2.                   Драбкин А.Л., Зузенко В.Л., Кислов А.Г. «Антенно-фидерные устройства». Изд. Сов. радио, 1974. 536 стр.

3.                   Жук М.С., Молочков Ю.Б. «Проектирование антенно-фидерных устройств». М.: Энергия, 1996 год 648 с.

4.                   Сазонов Д.М. «Антенны и устройства СВЧ: Учебник для радиотехнических специальных вузов». М.: Высш. шк., 1988. ‑ 432 с.: ил. ISBN 5‑06‑001149‑6.

5.                   «Справочник конструктора РЭА: Компоненты, механизмы, надёжность». Барканов Н.А., Бердычевский Б.Е., Верхопятницкий П.Д. и др.; Под. ред. Варламова Р.Г. – М.: Радио и связь, 1985 – 384 с., ил. Впер.: 2р. 40000 экз.

Угол разворота 90°

 

Угол разворота 0°

 

приложение 1. (Д.Н. облучателя).


Угол разворота 90°

 

Угол разворота 0°

 

приложение 2. (Распределение поля в раскрыве).


Угол разворота 0°

 

Угол разворота 90°

 

приложение 3. (Д.Н. всей антенны).


приложение 4. (Конструкция облучателя).


приложение 5. (Общий вид антенны).



приложение 6. (Профили сечения зеркал).



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.