Меню
Поиск



рефераты скачать Энергетика СВЧ в народном хозяйстве: применение СВЧ-нагрева в пищевой промышленности

     На рис. 8 приведены также кривые отношения мощности Pпад, подводимой к плазмотрону, к удельной мощности Pпл, поглощаемой в единице длины плазменного столба, находящегося в центре широкой стенки волновода. Эти кривые имеют минимум, в котором потребляемая от СВЧ генератора мощность минимальна. Правые ветви этих кривых соответствуют устойчивым режимам разряда.



     Рис. 8. Расчетные зависимости коэффициента передачи h, Kстv и Pпад/Pпл от отношения rпл/s для плазмотронов волноводного типа с согласованной нагрузкой и короткозамыкателем.


     Действительно, и при постоянной мощности, подводимой к плазмотрону, в разряде устанавливается определенная температура. Если режим работы соответствует некоторой точке на правой ветви кривой, то случайные малые изменения температуры в разряде вызывают ряд процессов,  возвращающих температуру к стационарному значению. Если температура случайно уменьшится, то длина разряда уменьшится, что приведет к увеличению удельной мощности Pпл и разогреву плазмы. Если температура случайно возрастает, то длина разряда возрастает и Pпл уменьшится, что приведет к остыванию плазмы. Этот механизм саморегулирования поддерживает в разряде постоянную температуру, соответствующую СВЧ мощности, подводимой к разряду.

     Граница устойчивости разряда соответствует значениям rпл/s @ 0,3¸0,6. При этом, например, температура плазмы азота равна 5500 — 5800K. Удельная мощность Pпл, требуемая для поддержания в плазме заданной температуры, может быть определена по кривой, приведенной на рис. 9. Далее по кривым Pпад/Pпл на рис. 8 можно определить и значение Pпад, при которой в плазме температура равна требуемому значению.

     Если проанализировать приведенные на рис. 8 и 9 данные, то можно сделать следующие важные для практики выводы.

     В плазмотроне с короткозамыкателем осуществляется значительно более эффективное использование СВЧ энергии, чем в плазмотроне с согласованной нагрузкой: hmax соответственно равны 0,97 и 0,5; минимальные мощности СВЧ генератора, требуемые для поддержания устойчивости разряда, равны соответственно 0,5 и 1,2 кВт. Минимальная температура СВЧ разряда в азоте при атмосферном давлении равна 5500K.



     Рис. 9. Зависимость  и  от температуры СВЧ разряда в азоте при атмосферном давлении.


     При экспериментах с рассматриваемыми плазмотронами расход газа подбирался минимально возможным с тем, чтобы сохранить стабильность разряда. В этом случае теплоотвод от разряда определяется в основном теплопроводностью газа на стенки разрядной трубки. Длина плазменного столба в плазмотроне с согласованной нагрузкой равнялась 4 см при поглощаемой в разряде мощности 900 Вт, что меньше расчетного значения на 20% — 30%. Объясняется это тем, что при расчете не учитывался спад температуры на концах плазменного шнура и вынос тепла из плазмы потоком газа при определении значения Pпл в соответствии с кривой, изображенной на рис. 9. Однако приведенные на рис. 8 и 9 расчетные данные дают удовлетворительную точность и могут быть использованы для предварительных расчетов конструктивных параметров плазмотронов.

     Рассмотрим пример практического применения плазмотронов.

     СВЧ плазменный источник возбуждения спектра. Наиболее часто в качестве источника тепла для разогрева порошков веществ, исследуемых с помощью анализаторов спектра, использовались газовые горелки. Для них характерна достаточная стабильность горения, а главным недостатком является внесение в зону нагрева продуктов горения газа, которые во многих случаях могут загрязнять обрабатываемый или анализируемый материал. Кроме того, температура, даваемая газовыми горелками, для анализа многих элементов недостаточна. С помощью плазмотронов может быть получен в атмосфере защитных газов — азота, гелия или аргона — стабильный нагрев до 8000K без каких-либо загрязнений. Для спектрального анализа применяют и электрические дуги постоянного и переменного токов. Они позволяют получить требуемую температуру, но не дают желаемой стабильности и вносят загрязнения продуктами разрушения электродов. Поэтому при их использовании воспроизводимость и точность анализа недостаточны.

     Высокотемпературный стабильный плазменный источник возбуждения спектра представляет собой установку, состоящую из двух блоков — блока питания и СВЧ блока, в который входят магнетрон M571 с регулируемой непрерывной мощностью от 0 до 2,5 кВт на длине волны 12,6 см и плазмотрон волноводного типа с согласованной нагрузкой.



     Рис. 10. Схематическое изображение СВЧ блока плазменного источника возбуждения спектра типа ПВС-1:

1 — магнетрон; 2 — плазмотрон волноводного типа; 3 — согласованная нагрузка; 4 — кварцевая трубка для подачи плазмообразующих газов и образования плазменного столба; 5 — конденсор; 6 — щель анализатора спектра.


     Схема СВЧ блока применительно к спектральному анализу приведена на рис. 10. Газ для образования плазмы подается в трубку из кварцевого стекла через завихряющую форсунку, не показанную на схеме. Через ту же форсунку или вдоль оси кварцевой трубки по отдельной трубке подается анализируемое вещество, которое распыляется в виде аэрозоля. Излучение плазменного столба через конденсатор проектируется на щель анализатора спектра, с помощью которого производится анализ обычными спектральными методами. Расход газа может составлять 8 — 10 л/мин при давлении, близком к атмосферному, плазменный столб длиной 25 — 30 мм имеет диаметр — 5 — 8 мм. Коэффициент передачи СВЧ энергии в разряд 0,55 — 0,6.

     Время анализа по сравнению с химическими методами сокращается в 2 — 5 раз. Вследствие высокой температуры, высокой чистоты в зоне нагрева и высокой стабильности плазменного источника появилась возможность анализировать как легко- и средневозбудимые, так и трудновозбудимые элементы, а также определять с высокой точностью средние и большие концентрации элементов. Кроме того, из-за отсутствия электродов открылась возможность анализа кислотных и щелочных растворов.

     Практическое использование источника ПВС-1 показало, что температура плазмы СВЧ разряда равна 4000 — 8000K, коэффициент вариации, характеризующий нестабильность самого источника, 1,5% — 2%, а при анализе коэффициент вариации 2% — 3%, чувствительность анализа 10 — 10 мг/мл.




Излучатели СВЧ энергии


     Излучатели СВЧ энергии фактически представляют собой передающие антенны того или иного типа, направляющие СВЧ энергию на обрабатываемый участок материала; СВЧ излучатели необходимы там, где надо нагревать часть большого предмета.

     Подобные излучающие устройства необходимы и при СВЧ сушке некоторых материалов, и при влагометрии, и при стерилизации ран на поверхности тела, и при воздействии на культуры микроорганизмов и т.д.



     Рис. 11. СВЧ облучатель в виде открытого конца волновода прямоугольного поперечного сечения.


     Простейшим СВЧ излучателем является открытый конец волновода (рис. 11). Для ограничения высокочастотных токов по фланцу, а следовательно, и СВЧ поля применяют специальные канавки 1, заполненные поглощающим материалом (b — размер узкой стенки волновода).

     Открытый конец стандартного прямоугольного волновода является весьма эффективной антенной. Даже без каких-либо подстроечных устройств Kстv в волноводе равен 1,6, т.е. от открытого конца волновода отражается менее 5,5% передаваемой по волноводу мощности.

     Меньшую площадь облучения дает излучатель в виде открытого конца H-образного волновода (рис. 12). На этом рисунке пунктиром показана зона максимального нагрева.



     Рис. 12. СВЧ облучатель в виде открытого конца H-образного волновода.


     Наилучшее согласование со свободным пространством имеет рупорная антенна с корректирующей диэлектрической линзой 1 в ее раскрыве (рис. 13). Она применяется либо для создания плоского фронта СВЧ волн (рис. 13, a), либо фокусировки СВЧ излучения на небольшой площади подобно обычной двояковыпуклой линзы в оптическом диапазоне. Минимальный диаметр пятна в фокусе получаетя примерно равным рабочей длине волны l (рис. 13, b).



     Рис. 13. СВЧ облучатель в виде рупорно-линзовой антенны для создания плоского фронта волны (a) и для фокусировки излучения (b).


     На рис. 14 показан рупорно-параболический облучатель, применяемый для раскалывания бетонных плит. При l=12,6 см и Pизл=2,5 кВт бетонная плита толщиной 200 мм раскалывается через несколько секунд или минут после начала облучения.



     Рис. 14. СВЧ облучатель в виде рупорно-параболической антенны.


     При использовании электромагнитных волн коротковолновой части сантиметрового и миллиметрового диапазонов применение резонаторных камер, ЗС и волноводов, в которых производится воздействие СВЧ колебаний на вещество, становится нецелесообразным из-за их малых поперечных размеров. Более эффективно осуществить направленное излучение СВЧ энергии и при этом получить равномерное по интенсивности поле излучения на заданной площади и близкое к нулю поле вне этой площади.

     Равномерное излучение на прямоугольном участке поля создает пирамидальный рупор, подключенный к прямоугольному волноводу с волной H10. Однако постоянство плоскости поляризации напряженности электрического поля E в этом случае допустимо не для всех применений. Например, наиболее эффективно воздействуют миллиметровые волны на бактерии тогда, когда вектор E параллелен большему размеру бактерии. А так как бактерии ориентированы в облучаемом пространстве хаотически, то для повышения эффективности облучения желательно иметь равномерное по мощности распределение поля на площади, ограниченной кругом, и в пределе этой площади иметь круговую поляризацию вектора E.

     Подобного типа облучатель для рабочей длины волны 7,1±0,2 мм изображен на рис.15. Он состоит из перехода со стандартного прямоугольного волновода сечением 2,6x5,2 мм на круглый волновод диаметром 6,2 мм. В этом переходе волна H10, распространяющаяся в прямоугольном волноводе, плавно и без отображений преобразуется в волну H11 круглого волновода с сохранением плоскости поляризации вектора E. Для получения круговой поляризации вектора напряженности электрического поля в круглом волноводе используется секция круглого волновода, в которую помещена четвертьволновая полистироловая пластина (e=2,56) толщиной 1,1 мм и длиной 10 мм с плавным сужением на концах для предотвращения отражений, плоскость которой расположена под углом 45° к направлению вектора E в прямоугольном волноводе. Далее круглый волновод диаметром 6,2 мм переходит в излучающий рупор с углом раскрыва 36° и диаметром раскрыва 150 мм. Применялись также рупоры с раскрывами 50 и 300 мм. Для формирования равномерного поля облучения в раскрыве рупора помещена диэлектрическая линза из фторопласта (e=2,08), имеющая специально рассчитанный профиль по стороне, обращенной к волноводу, и плоскую поверхность на стороне объекта облучения.

     Идеальную равномерность поля в пределах радиуса R получить невозможно. Равномерность считается достаточной, если перепады интенсивности поля в пределах круга радиуса R не превышают 3 дБ.

     Наилучшая равномерность напряженности поля получилась при раскрыве рупора 150 мм. Размер равномерно облучаемой поверхности при этом можно регулировать изменением расстояния L. При L³400 мм равномерность поля по сечению луча уже практически не меняется. Таким образом, увеличивая L, можно получить увеличение диаметра 2R равномерно облученной поверхности.



     Рис. 15. Облучатель с круговой поляризацией вектора напряженности электрического поля:

1 — переход с прямоугольного волновода с сечением 2,6x5,2 мм на круглый волновод диаметром 6,2 мм; 2 — фазосдвигающая диэлектрическая пластина; 3 — рупор с раскрывом 150 мм; 4 — линза из фторопласта; 5 — прижимное кольцо.


     Применение рассмотренной квазиоптической системы формирования пучка электромагнитных волн позволило передавать на облучаемую поверхность 80% энергии, излучаемой рупором при допустимом изменении интенсивности напряженности электрического поля на 3 дБ от максимального значения. Без применения описанной системы формирования на равномерно облучаемую поверхность приходится только 55% излученной рупором энергии поля волны H11. Применение линзы эквивалентно увеличению площади облучаемой поверхности примерно в 1,5 раза.

     Таким образом, рассмотренный тип облучателя позволяет получить равномерную с точностью до 3 дБ облучаемую поверхность на длине волны 7,1 мм диаметром от 50 до 300 мм. Диаметр облучаемой поверхности определяется расстоянием от рупорно-линзевой антенны до объекта облучения.




Сублимационная сушка


     Одним из сравнительно новых способов консервации продуктов обеспечивающих максимальное сохранение вкусовых свойств и качеств свежих продуктов, является сублимационная сушка. При такой сушке хорошо сохраняются витамины, белки и ароматические вещества, продукты имеют малую массу и в герметичной упаковке, например из полиэтиленовой пленки, могут без ухудшения качества храниться многие годы.

     В технологическом процессе сублимационной сушки продукты сначала быстро замораживают, потом помещают в вакуумную камеру, где производится откачка давления остаточных газов до 2,7 — 8 Па. В вакууме происходит интенсивное испарение льда. Этот процесс идет с поглощением тепла. Чтобы в процессе испарения температура продукта не падала слишком сильно, необходимо подводить тепло извне. Это так называемая теплота возгонки.

     Сублимационную сушку можно проводить путем теплоизлучения: например, получать тепло от специальных пластин, нагреваемых горячей жидкостью и помещаемых в вакуумной камере вблизи лотков с замороженными продуктами. Постепенно лед будет испаряться (практически полностью), а продукт приобретает вид губки значительно меньшей массы. Испаряемая влага не откачивается насосами, а конденсируется на специальных конденсационных пластинах, охлаждаемых до температуры ниже —55°C. Эти пластины периодически очищают от наросшего льда.

     После герметизации в полиэтиленовые пакеты сублимированные продукты можно перевозить и хранить без охлаждения.

     Наиболее длительной и сложной технологической операцией при теплоизлучении является возгонка льда, которая в начале процесса сушки проходит при температуре поверхности продукта (— 40 ¸ —50)°C. В процессе сушки граница между высушенной и замороженной частями продукта, т.е. поверхность возгонки, постепенно перемещается вглубь, так что снаружи образуется высушенный слой с малой теплопроводностью, который препятствует передаче тепла к внутренним замороженным частям продукта. В результате для сушки теплоизлучением требуется от 8 до 24 ч. Если попытаться сократить это время, то можно перегреть наружные высушенные слои.

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.