|
Введение
Ускорение научно-технического прогресса во всех областях требует интенсивного развития таких направлений науки и техники, автоматизация, роботизация, микроэлектроника, вычислительная техника, освоение новых технологий и новых материалов. Больших успехов достигла отечественная микроэлектроника. Разрабатываются и выпускаются все более сложные интегральные схемы, степень интеграции которых характеризуется сотнями тысяч транзисторов в полупроводниковом кристалле: контролеры, микропроцессоры, микросхемы памяти, однокристальные микроЭВМ. Освоены и продолжают осваиваться новые технологические методы, значительно повышающие быстродействие микросхем и снижающие уровень их энерго потребления. Большое применение находят технологии программируемых структур, базовых матричных кристаллов которые позволяют внедрять в практику систему заказов микросхем требуемого функционального назначения при приемлемом уровне их стоимости и небольших сроках разработки. Существенно расширяется номенклатура цифровых, аналоговых и аналого-цифровых микросхем. Заметна тенденция совмещения в одной микросхеме аналоговых и цифровых узлов, а также узлов, реализующих аналоговые функции цифровыми методами. Успехи микроэлектроники сделали возможным широкое применение в аппаратуре нового поколения микросхем повышенного уровня интеграции. Многие задачи по созданию новой аппаратуры решаются на базе микропроцессоров, микроЭВМ, БИС памяти с повышенной информационной емкостью, БИС аналогово-цифровой обработки сигналов с встроенными микропроцессорами. В повседневной жизни особенно в последнее время микропроцессорные системы играют не последнюю роль, с ними можно встретиться почти в любой бытовой аппаратуре. Их встраивают в телевидео-, аудиоаппаратуру. Микропроцессоры управляют кухонными комбайнами, стиральными машинами, СВЧ печами, и многими другими бытовыми приборами. Исходя из всего вышесказанного можно сделать вывод: устройства на интегральных схемах находя и будут находить применение не только в вычислительных системах, но и в других сферах деятельности человека, и безусловно, найдут широкое применение в повседневной жизни людей.
1.Сравнительная характеристика видов индикации. Для потребителей техники большой интерес представляют устройства отображения информации, построенные с применением статической и динамической индикации. Суть статической индикации заключается в постоянном подсвечивании индикатора от одного источника. Сущность динамической индикации заключается в поочередном включении индикаторов через общую цепь преобразования кода. Подключение индикаторов необходимо производить с частотой f=120 ... 140 Гц, такой частоты достаточно, чтобы не замечать мерцания индикаторов. Достоинством динамической индикации является экономия преобразователей кода и соединительных проводов, что весьма существенно если схема динамической цифровой индикации удалена от источника информации. Преимущество данного способа ощутимо при числе разрядов больше 4 ... 6. Схема с динамической индикацией потребляет меньший ток, имеет меньшие габариты и меньшую стоимость. Из цифровых индикаторов более широкое распространение получили семи сегментные индикаторы у которых изображение состоит из семи сегментных светодиодов. Рисунок 1.1
Рассмотрим схему динамической индикации и ее работу рисунок 1.1. Число индицируемых цифр представлен количеством индикаторов в схеме и определяет коэффициент пересчета счетчика У3. Кроме того, число выходов (разрядов) счетчика равно числу адресных входов коммутатора. Адрес задается сигналами с выхода счетчика У3. Эти коды отражают состояние счетчика при поступлении входных импульсов от генератора, период тактовой частоты которого выбирают выше разрешающей способности человеческого глаза, чтобы не было заметно мерцание индикаторов - от 10 до 15 мс. Преобразователь У2 двоично-десятичный код преобразует в код семи сегментного цифрового индикатора. Каждое состояние счетчика У3 дешифрирует дешифратор У4, подключая соответствующий индикатор. 2.Синтез коммутатора и выбор ИМС Мультиплексор в зависимости от заданного адресного сигнала может осуществлять коммутацию на единственный выход одного из входов. Каждому информационному входу присваивается порядковый номер в двоичном коде, который называется адресом. Количество адресных и информационных входов может быть различно, но между ними существует жесткая связь Для данной схемы число информационных входов равно числу индицируемых разрядов то есть пятнадцати. В соответствии с уравнением определяемым число адресных входов А
следовательно число адресных входов в схеме мультиплексора пять. Составляем таблицу истинности (таблица 2.1) и следуя из таблицы уравнения. Затем строим схему мультиплексора (рисунок 2.1). Исходя из полученной схемы выбираем серийную микросхему мультиплексора и строим коммутатор. Таблица 2.1 | ||||||||||||||||||||||||||
Адресные входы |
Вход разрешения |
Выход |
|||||||||||||||||||||||||
А4 |
А3 |
А2 |
А1 |
А0 |
С |
Q |
|||||||||||||||||||||
. |
. |
. |
. |
. |
0 |
0 |
|||||||||||||||||||||
0 |
0 |
0 |
0 |
0 |
1 |
D0 |
|||||||||||||||||||||
0 |
0 |
0 |
0 |
1 |
1 |
D1 |
|||||||||||||||||||||
0 |
0 |
0 |
1 |
0 |
1 |
D2 |
|||||||||||||||||||||
0 |
0 |
0 |
1 |
1 |
1 |
D3 |
|||||||||||||||||||||
0 |
0 |
1 |
0 |
0 |
1 |
D4 |
|||||||||||||||||||||
0 |
0 |
1 |
0 |
1 |
1 |
D5 |
|||||||||||||||||||||
0 |
0 |
1 |
1 |
0 |
1 |
D6 |
|||||||||||||||||||||
0 |
0 |
1 |
1 |
1 |
1 |
D7 |
|||||||||||||||||||||
0 |
1 |
0 |
0 |
0 |
1 |
D8 |
|||||||||||||||||||||
0 |
1 |
0 |
0 |
1 |
1 |
D9 |
|||||||||||||||||||||
0 |
1 |
0 |
1 |
0 |
1 |
D10 |
|||||||||||||||||||||
0 |
1 |
0 |
1 |
1 |
1 |
D11 |
|||||||||||||||||||||
0 |
1 |
1 |
0 |
0 |
1 |
D12 |
|||||||||||||||||||||
0 |
1 |
1 |
0 |
1 |
1 |
D13 |
|||||||||||||||||||||
0 |
1 |
1 |
1 |
0 |
1 |
D14 |
|||||||||||||||||||||
0 |
1 |
1 |
1 |
1 |
1 |
D15 |
|||||||||||||||||||||
1 |
0 |
0 |
0 |
0 |
1 |
D16 |
|||||||||||||||||||||
1 |
0 |
0 |
0 |
1 |
1 |
D17 |
|||||||||||||||||||||
1 |
0 |
0 |
1 |
0 |
1 |
D18 |
Уравнение мультиплексора:
По полученному уравнению строим коммутатор в базисе И-НЕ (рисунок 2.1).
Для построения коммутатора на промышленных ИМС выбираем одну микросхему К133КП1 и одну микросхему К133КП2. К133КП1 - 16 - входовый цифровой мультиплексор (рисунок 2.2). Он позволяет с помощью четырех адресных входов выбора S0 - SЗ передать данные, поступающие на один из входов I1 - I16 в выходной провод . По - другому, данный мультиплексор - это 16- позиционный переключатель, снабженный инвертором на выходе. Режимы работы мультиплексора КП1 даны в табл. 2.2. Если на вход разрешения подано напряжение высокого уровня, на выходе Y так же появится высокий уровень независимо от адреса S0 - SЗ и данных на входах I1 - I16. Напряжение низкого уровня на входе прохождение данных от входов I1- I16.
Новости |
Мои настройки |
|
© 2009 Все права защищены.