Меню
Поиск



рефераты скачать Управление ДПЛА через ретранслятор

Две антенны радара (расположены по бокам в нижней части приборного отсека фюзеляжа, длина 1.21 м) и необходимое электронное оборудование весом 290 кг потребляют 6 кВт электроэнергии.

Дневная электронно-оптическая цифровая камера изготовлена компанией Hughes и обеспечивает получение изображений с высоким разрешением. Датчик (1024 x 1,024 пиксель) сопряжен с телеобъективом с фокусным расстоянием 1750 мм. В зависимости от программы есть два режима работы. Первый - сканирование полосы шириной 10 км. Второй - детальное изображение области 2 х 2 км. Для получения ночных изображений используется ИК-датчик (640 х 480 пиксель). Он использует тот же самый телеобъектив. Объектив может поворачиваться на угол 80 градусов.

Радар, дневная и инфракрасная камеры могут работать одновременно, что позволяет получить большой объем информации. Дневная / инфракрасная камера имеет скорость выдачи информации - 40 млн. пикселей в секунду, что составляет в зависимости от цветового разрешения 400 Мбит/сек. Бортовая система сбора и хранения информации сжимает полученные цифровые изображения и записывает их.

Для передачи информации потребителям могут быть использованы несколько каналов связи. По спутниковому каналу скорость передачи информации составляет 50 Мбит/с. Для этих целей используется спутниковая система связи Ku-диапазона (SATCOM), диаметр антенны 1.22 метра. По прямому каналу диапазона UHF можно передавать информацию со скоростью 137 Мбит/с.

Информация направляется на наземную станцию управления полетом и на станцию управления взлетом/посадкой. В будущем пользователи, не имеющие связи с наземной станцией, смогут получать изображения напрямую от БПЛА Global Hawk.

Global Hawk будет интегрирован в существующие системы тактической воздушной разведки (планирование полетов, обработка данных, эксплуатация и распространение информации). Если он будет подключен к таким системам как объединенная система обеспечения разведки (JDISS) и глобальная система командования и управления (GCCS), изображения будут передаваться оперативному командующему для немедленного использования. Данные, полученные от БПЛА, будут использоваться для обнаружения целей, для планирования ударных операций для рекогносцировки, а так же для решения иных задач.

Программа требует, чтобы БПЛА без применения стелс-технологий имел достаточно высокую выживаемость. Для самозащиты Global Hawk оснащается детектором облучения радиолокаторами AN/ALR 89 RWR и постановщиками помех. При необходимости он может использовать буксируемый постановщик помех ALE-50. Эксперименты по моделированию реальных ситуаций показали, что Global Hawk может совершить более чем 200 вылетов без повреждений, если маршрут его полета спланирован с учетом текущей обстановки (вне зон активных боевых действий). В случае опасности БПЛА может вызвать помощь, связавшись с ближайшим авиационным патрулем или самолетом AWACS.

Для повышения мобильности все наземное оборудование размещено в контейнерах или на специальных трейлерах. В состав наземного оборудования входят:

  • Станция управления взлетом/посадкой
  • Станция управления операциями полетом
  • Трейлер с антенным оборудованием (SATCOM)
  • Трейлер со спутниковой антенной
  • Трейлер с кабелями
  • Два генератора
  • Два дополнительных генератора
  • Комплект силовой аппаратуры
  • Двигательный стенд с двигателем
  • Комплект запчастей
  • Комплект для обслуживания БПЛА
  • Станция управления полетом и станция управления взлетом/посадкой размещены в отдельных контейнерах размером 2.4х2.4х7.2м и 2.4х2.4х3.25м соответственно. Для удобства перемещения контейнеры снабжены выдвигающимися колесами. Комплекс наземного оборудования БПЛА Global Hawk может транспортироваться по воздуху тремя военно-транспортными самолетами С-141В, или двумя C-17, или одним С-5В.

    29 марта 1999 года в 10:14 БПЛА Global Hawk №2 во время испытательного полета потерял управление и разбился рядом с озером Searles Lake. Это произошло на высоте 12500 метров после подачи сигнала на прекращение полета с авиабазы Nellis, Невада. БПЛА начал выполнение запрограммированного маневра прекращения полета и сорвался в штопор. Эта авария затормозила выполнение программы как минимум на два месяца. Изготовление замены для разбившегося БПЛА обойдется в $30 млн. С 1994 по март 1999 года в программу Global Hawk уже вложено $280 млн.


 ЛТХ:

 

 

 

Модификация

  RQ-4

Размах крыла, м

  35.42

Длина, м

  13.53

Высота, м

  4.62

Площадь крыла, м2

  50.2

Масса, кг

 

  пустого

  4177

  взлетная

  11622

  топлива

  6583

Тип двигателя

  1 ТРДД Allison AE3007H

Тяга, кгс

  1 х 3450

Максимальная скорость, км/ч

  639

Радиус действия, км

  4445

Продолжительность полета, ч

  38

Практический потолок, м

  19800



Цифровая радиолиния с сигналом КИМ-ЧМ

В цифровой системе передачи информации с радиосигналом КИМ-ЧМ необходимо оценить точность передачи сообщения и выб­рать основные параметры радиолинии, определяющие точность. Из­вестно, что в системе непрерывно принимаются сообщения. В приемном устройстве применяется прием “в целом”.

Необходимо знать - скорость передачи информации R (двоичных единиц в секунду), энергетический потен­циал радиолинии, закон изменения несущей частоты из-за нестабильности передатчика и движения передающего и принимающего пунктов. Предполагается также, что символы в КИМ сигнале могут считаться независимыми, а априорная вероятность появления нуля и единицы одинакова.

Рисунок 1. Функциональная схема приемника беспилотного ДПЛА

В приемном устройстве после преобразования и усиления про­исходит оптимальный прием “в целом”. Функциональные схемы оптимальных приемников приведены на Рисунок 1. Оптимальный приемник вычисляет взаимную корреляцию приня­того сигнала  с каждым из возможных сигналов  и выносит решение о приеме того сигнала, для которого указанная величина имеет наибольшее значение. Схема оптимального приемника содержит  активных корреляторов. В этом случае имеется генератор опорных сигналов . В состав приемника входит также устройство синхронизации, с помощью которого обеспечивается синхронизация принимаемых и опорных сигналов, а также разряд интегратора после окончания кодового слова. Опорное напряжение вырабатывает система ФАП. При оценке помехоустойчивости оптимального приемника параметры входного сигнала считаются полностью известными. Такой приемник известен под названием корреляционного (или когерентного) приемника. Опорные сигналы поступают на корреляторы одновременно с принятым сигналом . Коррелятор состоит из перемножителя сигналов и интегратора. В момент окончания принятого сигнала выходное напряжение корреляторов определяется как

,    ().

В качестве показателя точности основного тракта принимается вероятность неправильной оценки слова (). В качестве внешнего воздействия на систему будем рассматривать собственный шум приемника, заданный энергетическим потенциа­лом .

Для сигнала КИМ-ЧМ перемножитель сделаем необычный. Функциональная схема перемножителя представлена на Рисунок 2.

Рисунок 2. Функциональная схема перемножителя КИМ-ЧМ

Частотный детектор построен на двух разнесенных фильтрах, каждый из которых настроен на свою частоту, передающую сигналы «1» и «0» соответственно. Фильтры согласованны с формой символа сигнала так, что на выходе фильтра огибающая символа становится треугольной. Предполагается, что разнос частот, на которые настроены фильтры, значительно превышает их полосы пропускания. Огибающие на выходе фильтров выделяются линейными амплитудными детекторами. Выходы детекторов вычитаются. Образующиеся разнополярные импульсы усиливаются в видеоусилителе линейно, если их абсолютная величина меньше уровня насыщения . В противном случае, начиная с заданного уровня, модуль выходного напряжения видеоусилителя не увеличивается. Инвертор в свою очередь меняет полярность сигнал принятого с видеоусилителя, если эталонный сигнал  соответствует «0». Таким образом, при совпадении  с  на выходе перемножителя будут положительные импульсы, в ином случае перемножитель будет выдавать отрицательные импульсы. Далее энергия импульсов накапливается в интеграторе.

Основной тракт радиолинии

Анализ основного тракта радиолинии целесообразно начать с выяснения принципиальной возможности получить приемлемые результаты в заданных условиях. Дело в том, что энергетический потенциал и скорость передачи информации, значения которые за­даны, уже определяют минимально возможную вероятность искажения символа. Если вероятность искажения символа окажется слишком боль­шой, то не имеет смысла рассчитывать реальную радиолинию, которая, разумеется, будет еще хуже.

Вероятность ошибки при оценке слова в сигнале КИМ-ЧМ для оптимальной обработки при приеме “в целом” равна

,                      (1)

где  - отношение сигнла/шум,  - энергия сигнала,  - мощность полезного сигнала КИМ-ЧМ,  - длительность слова,  - спектральная плот­ность шума. После расчета ошибки по формуле (1) может оказаться не­обходимым потребовать изменить исходные условия — увеличить энергетический потенциал или уменьшить скорость передачи и толь­ко после этого приступить к расчету реальной радиолинии.

Система синхронизации

В цифровых радиолиниях необходимо применять кадровую при синхронной передаче, а также пословную синхронизации. В случае посимволь­ного приема дополнительно требуются сигналы посимвольной синхро­низации. С помощью соответствующих синхронизирующих сигналов осуществляется разделение каналов и обеспечивается правиль­ная работа декодирующих устройств командных сигналов. В нашем случае сигнал будет иметь следующий вид.

Рисунок 3 Структура демодулированного сигнала

Кадровая синхронизация. Синхронизирующее слово, ставящееся  в начале каждого кадра, называется словом кадровой синхронизации. В качестве слов кадровой синхронизации час­то используются составные сигналы, причем выделение этих слов в при­емнике осуществляется с помощью пассивного согласованного фильт­ра (Рисунок 4). Напряжение на выходе согласованного фильтра воспроизводит автокорреляционную функцию синхронизирующего сигнала. Для уменьшения ошибок, возникающих при обнаружении синхронизирую­щего сигнала и определении его временного положения, автокорреля­ционная функция данного сигнала должна иметь узкий центральный пик и малый уровень «боковых» выбросов. Подобным свойством обла­дает ряд широкополосных сигналов, в том числе сигналы, сформиро­ванные на основе некоторых двоичных кодов.

Рисунок 4 Устройство декодирования кадрового синхронизирующего сигнала

Принятый синхронизирующий видеосигнал, поступает на вход линии задержки. Расстояние между отдельными отводами этой линии соответствует длительности элементарных импульсов кода . Максимальное время задержки синхронизирующего сигнала равно полной длительности сигнала . Сигналы, которые снимаются с отводов линии задержки, поступают на сумматор. При этом часть сигналов проходит через инверторы, изменяющие полярность сигналов. Пространственное расположение отводов линии задержки, к которым подключены инверторы, воспроизводит в обратном порядке временное положение символов «0», имеющихся в составе рассматриваемого синхронизирующего кодового слова. Тем самым обеспечивается синхронное накопление энергии отдельных импульсов этого слова в сумматоре. К выходу сумматора подключен фильтр, который согласован с одиночным видеоимпульсом длительности . В момент окончания принятого синхронизирующего кодового слова на выходе согласованного фильтра образуется короткий импульс значительной амплитуды. С помощью таких импульсов осуществляется запуск порогового устройства, предназначенного для выделения отдельных синхронизирующих сигналов.

На вход рассматриваемого согласованного фильтра поступает напряжение , которое содержит как синхронизирующее, так и телеметрические сигналы. Воздействие на согласованный фильтр телеметрических слов сопровождается образованием дополнительных «выбросов» напряжения на выходе этого фильтра. Для предотвращения ложных срабатываний порогового устройства под действием таких выбросов коэффициенты взаимной корреляции между синхронизирующим сигналом и отдельными телеметрическими словами должны иметь незначительную величину.

В инерционной системе кадровой синхронизации сигналы, выделенные с помощью согласованного фильтра, могут использоваться для автоматической подстройки частоты местного генератора синхронизирующих сигналов. Постоянная времени инерционной системы значительно превышает длительность синхронизирующего сигнала . Следовательно, в установившемся режиме обеспечивается хорошая фильтрация помех, и высокая точность определения начала кадра. Недостатком инерционной системы является значительное время обнаружения слова кадровой синхронизации, а также возможность срыва слежения под действием помех.

Пословная синхронизация предназначается для определения границ отдельных команд в составе кадра. Существуют различные способы осуществления пословной синхронизации. Способ, который мы будем использовать, основан на использовании специальных разделительных сигналов (Рисунок 3 – заштрихованные импульсы). При синхронной непрерывной передаче сообщений разделительные сигналы имеют периодический характер, поэтому в спектре модулирующего сигнала радиолинии возникает регулярная составляющая на частоте следования слов сообщения . После детектирования принятого радиосигнала эта составляющая выделяется с помощью узкополосного фильтра и используется для формирования сигналов пословной синхронизации. Такая система синхронизации является инерционной.

Посимвольная синхронизация используется при посимвольном приеме кодовых слов и обеспечивает разделение элементарных сигналов, соответствующих различным позициям кодового слова. Требования к точности посимвольной синхронизации зависят от используемого способа обработки элементарных информационных сигналов в приемнике. При обработке, близкой к оптимальной, а она в нашем случае именно такая, необходимо достаточно точное определение границ этих сигналов. Требования к точности синхронизации возрастают с уменьшением длительности элементарных сигналов.

Рисунок 5 Функциональная схема инерционной системы посимвольной синхронизации

Для выделения сигналов посимвольной синхронизации непосредственно используется последовательность принимаемых  информационных символов. На Рисунок 5 показана функциональная схема инерционной системы посимвольной синхронизации. В результате дифференцирования сигнала , образуется последовательность импульсов, временное положение которых соответствует границам между соседними символами «1» и «0». Эта последовательность поступает на временной дискриминатор, который вырабатывает управляющее напряжение, пропорциональное временнóму рассогласованию между входной и опорной последовательностью импульсов. Последняя и используется в качестве сигналов посимвольной (тактовой) синхронизации. Опорная последовательность вырабатывается генератором синхронизирующих сигналов. С помощью управляющего напряжения изменяется частота следования импульсов опорной последовательности, тем самым обеспечивается автоматическая подстройка генератора синхронизирующих сигналов.

Анализ таких систем имеет целью определить флюктуации моментов временных меток относительно положения, соответствующих идеальной ра­боте. В нашем случае мы будем считать, что система синхронизации работает идеально. В качестве показателя точности можно взять среднеквадратическую ошибку, которая для нормальной работы должна быть много меньше длительности одного символа.



 

Расчет





Определение параметров имитационной модели

1)        Источник дискретных сообщений:

-       дискретные независимые сообщения с заданными вероятностями появления в источнике V(1) = 4;

-       количество различных сообщений JU = 16;

-       вероятность появления различных значений сообщения A(1...16) = 0.0625;

2)        Кодирующее устройство:

-       ортогональный код V(2) = 4;

-       количество символов NS = 16;

3)        Радиоканал:

-       радиоканал, использующий сигнал КИМ-ЧМ и приемный тракт с частотным детектором на разнесенных согласованных фильтрах V(7) = 4, V(9) = 1.

-       уровень насыщения в видеоусилителе  задается, как A(171) = 1;

4)        Аддитивные помехи:

-       Широкополосная шумовая помеха. На входе радиоканала такая помеха представляет собой “белый” шум.

-       параметром модели помехи является дисперсия . Таким образом, A(151) = 1.075;

-       Узкополосная шумовая помеха:

-       в данной модели мы не можем учесть помеху как узкополосную, так как не выполняется условие . Эта помеха учтена, широкополосная шумовая помеха;

5)        Замирание амплитуды сигнала (фединг):

-       случайные замирания амплитуды по закону Релея-Райса с экспоненциальной временной корреляцией V(6) = 2;

-       среднее значение компоненты , задается как A(163) = 0.9;

-       среднеквадратическое отклонение компоненты . Задается элементом массива A(161) = 0.3;

-       коэффициент корреляции , задается как A(162) = 0.9;

6)        Временное положение меток системы символьной синхронизации:

-       флюктуация временного положения меток отсутствуют (символьная синхронизация идеальная) V(3) = 1;

-       номинальное положение метки от конца символа , соответственно A(131) = 0;

7)        Флюктуация фазы опорного напряжения синхронного детектора:

-       идеальный синхронный детектор V(4) = 0;

8)        Декодирующее устройство:

-       прием кодового слова в целом V(8) = 5;

9)        Продолжительность эксперимента:

-       продолжительность машинного эксперимента определяется объемом исследуемой выборки сообщений (кодовых слов). Возьмем количество слов равное количеству команд переданных за сеанс связи M = 64.

10)    Дополнительные параметры:

-       IX = 7.


Анализ результатов расчета и моделирования

Расчеты, проведенные при выборе базового варианта радиолинии, дали следующие показатели достоверности приема информации:

·      вероятность отказа от декодирования – ;

·      вероятность ошибки кодового слова – ;

В результате моделирования получены следующие оценки достоверности:

·      вероятность отказа от декодирования – ;

·      вероятность ошибки кодового слова – ;

При моделировании была взята выборка  командных слов, что соответствует длительности сеанса 3 секунды.

Как видно, результаты расчета и моделирования различны, однако надо заметить, что показатели в обоих случаях удовлетворяют ТЗ.

Оценим точность статического эксперимента при моделировании, учитывая количество независимых испытаний в данном эксперименте их 64.

·      вероятность отказа от декодирования равна ;

·      вероятность ошибки кодового слова равна ;

Итак, все получившиеся различия в результатах расчета и моделирования, являются неизбежными, те более, когда имитационная модель оставляет желать лучшего.

Литература

1.             “Теория и проектирование радиосистем”, Л. В. Березин, В. А. Вейцель. – М.: Сов. радио, 1977.

2.             “Основы радиоуправления”, под ред. В. А. Вейцеля и В. Н. Типугина. – М.: Сов. радио, 1973.

3.             “Радиотехнические системы передачи информации”, П. И. Пеннин, Л. И. Филиппов. – М.: Радио и связь, 1984.

4.             “Автоматизированная модель радиолинии с цифровой передачей информации”, уч. пособие, В. А. Вейцель, С. С. Нужнов. – М.: МАИ, 1985.

5.             “Методические указания к курсовому проекту «Радиолинии с цифровой передачей информации»”, авт.-сост. В. А. Вейцель, А. И. Куприянов, М. И. Жодзишский. – М.: МАИ, 1987.

6.             “Инженерный справочник по космической технике”, под. ред. Соловова. – М.: Воениздат, 1974.

7.             #"#">http://www.airwar.ru/enc/bpla/rq4.html



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.