Меню
Поиск



рефераты скачать Системы спутниковой связи

ИСЗ состоит из: космической платформы и полезной нагрузки. В случае геостационарных спутников конфигурация ИСЗ тесно связана с радиотехническими и конструктивными параметрами полезной нагрузки, что накладывает на космическую платформу ряд требований: высокая степень удержания и устойчивость положения; высокая точность наведения антенн; большой срок службы на выделенной орбитальной позиции; отвод (рассеяние) тепла, выделяемого полезной нагрузки, в свободное пространство; подвод электрической энергии от системы батарей к полезной нагрузке; обеспечение (если предусмотрено) возможности работы в тенях. Основные части ИСЗ следующие: собственно конструкция; система терморегулирования; система регулирования положения и орбиты (т. е. система стабилизации ИСЗ на геостационарной орбите); система определения дальности (командная и телеметрическая); апогейный двигатель. Конструкция ИСЗ должна выдерживать статические и динамические нагрузки, возникающие при запуске ракеты-носителя; статические и динамические нагрузки, вызванные пуском апогейного двигателя и различного рода орбитальные возмущения.

Динамические нагрузки, вызываемые работой стартовой установки, очень велики и состоят из механических и акустических ударов и вибраций, связанных с работой двигателя и возникающих в процессе движения.

Обычно конструкция ИСЗ условно делится на две части: главную и вспомогательную (или обеспечивающую).

Главную конструкцию, или корпус, на ИСЗ выполняют из легких алюминиевых сплавов, она содержит простую оболочку цилиндрической или конической формы с рамой или ребрами жесткости и различные фасонные опоры и перекладины для ячеистых панелей и плоскостей антенн и других устройств.

Вспомогательная конструкция (платформа) включает в свой состав, например, панели солнечных генераторов (батарей) и антенных рефлекторов, и выполняют ее обычно из сложных материалов (например, угольное волокно, эпоксидная резина) высокой жесткости и с низким коэффициентом расширения, с одновременным учетом минимизации массы и в совокупности со стойкостью и способностью сохранить размеры при значительных перепадах температур.

Система терморегулирования поддерживает температуру ИСЗ в пределах, подходящих для нормального функционирования ПН, и другой, обеспечивающей функционирование ИСЗ на орбите, аппаратуры.

В космосе теплопередача происходит главным образом в результате излучения в вакуум. Для приборов ИСЗ она происходит через их конструктивную связь с внешними излучающими радиаторами, постоянная освещенность которых сильно ограничивает емкость теплопередачи. Внешние источники тепловой энергии, воздействующие на ИСЗ, — это тепловое излучение Солнца и Земли, а также отраженная от освещенной части Земли солнечная радиация (альбедо). Эти воздействия имеют различные спектральные и геометрические характеристики и поэтому по разному поглощаются (воспринимаются) поверхностью спутника.

Для геостационарных ИСЗ тепловая окружающая обстановка определяется следующими условиями: земной тепловой поток и альбедо незначительны; максимальная продолжительность периодов тени доходит до 70 мин/сутки; северная и южная стороны ИСЗ попеременно находятся в тени (до шести месяцев в году) и освещаются Солнцем на относительно низких углах (до 23° для других шести месяцев); в случае трехосной стабилизации боковые стороны ИСЗ по разному освещаются Солнцем в течение суток.

Кроме того, полезная нагрузка состоит, как правило, из подсистем с сосредоточенным (локализованным) тепловыделением (например, мощные усилители на ЛБВ, клистронах и т. п.).

Решение задач терморегулирования в трудных условиях обеспечивают принятые специальные конструктивно-технологические меры, а именно: использование жесткозакрепленных оптических солнечных отражателей, специальных материалов для создания легких поверхностей с высокой теплопроводностью (бериллий, магний), методов специального теплового кондиционирования для южной и северной сторон, в некоторых случаях ЛБВ с коллектором прямого излучения и/или с помощью тепловых труб и ограничение температурных перепадов на антеннах путем использования специальных покрытий.

Ещё одной важной характеристикой спутника является – срок его службы, его увеличение, достигнутое за последние годы, обусловлено внедрением твердотельных схем и усилителей, многократным дублированием (резервированием) ЛБВ и клистронов выходных устройств, появлением водородно-никелевых аккумуляторов и совершенствованием системы удержания ИСЗ на орбите.

Последнее стало возможным благодаря появлению двухкомпонентного топлива и электротермических корректирующих двигателей. Создание ионных двигателей позволит еще более повысить срок службы спутников (вплоть до 20 лет), одновременно уменьшая массу системы коррекции.

Внедрение перечисленных выше технических усовершенствований в технику ИСЗ уже сегодня привело к существенному увеличению времени его нахождения на орбите. Сейчас срок службы ИСЗ в первую очередь ограничивается износом систем коррекции орбиты и энергоснабжения, что объясняется деградацией солнечных элементов и потерей емкости аккумуляторов. За последние 20 лет срок службы спутников возрос с 18 месяцев до 3...5 лет, а потом и до 7 лет. Намечается переход к эксплуатации спутников с 10-летним жизненным циклом.

Основным элементом спутника является бортовой ретранслятор (БРТР) – радиотехническое приемопередающее устройство, устанавливаемое на ИСЗ и предназначенное для приема сигналов от передающей земной станции (одной или нескольких), их усиления и дальнейшей передачи в направлении приемной земной станции (одной или нескольких). Большинство спутников связи и вещания представляет собой многофункциональные устройства, содержащие по несколько трактов (или стволов), подключенных к нескольким антеннам. Возможны следующие варианты построения схемы одного ствола с учетом характера преобразования принимаемого сигнала.

БРТР гетеродинного типа наиболее часто встречаются в практике спутниковой связи и вещания. Ширина полосы пропускания такого БРТР, как правило, не превышает 40...80 МГц, а основное усиление обеспечивается в тракте преобразования частоты (ПЧ), в ряде случаев выбираемой в пределах 70...120 МГц. В таком БРТР обычно два преобразования частоты: понижающее и повышающее.

БРТР с однократным преобразованием частоты (в литературе встречаются названия: линейный БРТР, БРТР прямого усиления). В нем только одно преобразование частоты принимаемого сигнала, в результате которого спектр сигнала переносится в область сигналов передаваемых на землю частот. Преимущество такой схемы – в её простоте и большей широкополосности. Ширина полосы пропускания может доходить до 80...120 МГц. Однако недостаток такой схемы – трудности технической реализации, связанные с необходимостью получения значительного усиления на одной из частот. При типичных для большинства линий связи уровнях передаваемых и принимаемых сигналов потребуется реализовать в БРТР большое усиление (120 дБ ориентировочно), что затруднительно с точки зрения обеспечения устойчивости в работе.

БРТР с демодуляцией (или обработкой) сигнала на борту. Применялись, как правило, для передачи специальных видов информации. По мере развития систем спутниковой связи (переход к цифровым методам, обработка, сигналов на борту, изменение вида модуляции, коммутация сообщений по лучам и т. п.) такие схемы стали использовать и для обеспечения дуплексной связи через стационарные ИСЗ с детектированием (демодуляцией). Например, в случае работы цифровыми методами на борту нередко осуществляются детектирование принятых сигналов и их регенерация.

Конструкция БРТР должна обеспечивать самостоятельное и надежное функционирование в сложных условиях воздействия всей совокупности этих факторов в течение всего срока службы и удовлетворять следующим требованиям: минимально возможная масса при заданных требованиях надежности и энергетических показателей; оптимальная по условиям установки в ИСЗ форма для обеспечения минимальных нагрузок на ракету-носитель; оптимальное использование внутреннего пространства БРТР с целью обеспечения необходимых условий терморегулирования, удобного доступа к узлам и блокам и возможности замены блоков перед стартом; минимальное влияние динамических нагрузок неравномерности распределения масс в полете на другие системы ИСЗ, главным образом на системы ориентации и стабилизации; способность выдерживать различного рода вибрации, ускорения и удары, возникающие в процессе запуска и коррекции траектории, основным источником которых является работающий реактивный двигатель как самого космического аппарата, так и ракеты-носителя, частота вибраций от нескольких до тысяч герц; способность выдерживать резкое изменение температуры (+60...−150°С). Как видно, к БРТР предъявляют довольно жесткие требования, часто противоречащие друг другу. Например, БРТР должны иметь минимальные массу и габаритные размеры, отличаться высокой надежностью и экономичностью и в то же время отдавать максимально возможную мощность, иметь высокую стабильность параметров в течение большого срока эксплуатации.

По указанным причинам исполнение аппаратуры БРТР имеет ряд существенных отличий от аналогичной аппаратуры, находящейся в наземных условиях. К ним относятся прежде всего использование специальных методов монтажа, методов напыления, т. е. использование специальной технологии в процессе изготовления.

Учитывая всё вышеизложенное, в проектируемой системе спутниковой связи будем использовать БРТР гетеродинного типа, его структурная схема представлена на рис. 5.

рис.6 Структурная схема бортового ретранслятора гетеродинного типа, где: Г – гетеродин; УПЧ – усилитель промежуточной частоты; МУ – мостовой усилитель;

Принятый антенной сигнал на частоте fПР поступает на вход БРТР, в смесителе частота fПР смешивается с частотой гетеродина fГ1, в итоге на выходе смесителя будем иметь разностную частоту fПЧ=fПР−fГ1, т.е. осуществляется понижающее преобразование частоты. На частоте fПЧ в усилителе промежуточной частоты (УПЧ) осуществляется основное усилие БРТР в заданной полосе частот. В следующем преобразователе осуществляется повышающее преобразование усиленного сигнала ПЧ в сигнал частоты передачи fПЕР=fПЧ+fГ2, который после дополнительного усиления в выходном мощном каскаде мостового усилителя (МУ), собранном, как правило, на ЛБВ или клистроне, излучается в сторону Земли.

Таким образом данный БРТР сможет обеспечить уверенную ретрансляцию сигналов, получаемых с наземных станций.






























3. Расчётная часть.


По заданию необходимо рассчитать затухание сигнала при его распространении от передатчика, расположенного в городе Рим (Италия) до геостационарного ИСЗ и от этого ИСЗ до приемника, находящегося в городе Москва (Россия).

Данные для расчёта:

Рабочие частоты (fраб)                                                                4/6 ГГц;

Интенсивность дождя в обоих городах (ε)                               10 мм/ч;

Координаты:    г. Рим                                                       ДN =120   ШN =420

                        г. Москва                                                  ДN =380   ШN =560

Высота над уровнем моря:  г. Рим                                            200м;

                                            г. Москва                                        156м;

Долгота спутника (ДСП)                                                             100

Расстояние от земли до геостационарной орбиты (d)              35800 км;


Расчёт:

Затухание сигнала при его распространении от передатчика рассчитаем по формуле:

где  ;                  


Поглощение волн в атмосфере:


где          ,    


h’O2 =5,3 км;     h’H2O =2,1 км.


Затухание сигнала в гидрометеорах:


Угол места находим:



H=42170 км, RЗ=6370 км.


Произведем расчет на участке: г. Рим – ИСЗ

Угол места:

тогда


Найдем расстояние от передатчика до приемника ИСЗ

  => км;


тогда дБ;

Поглощение волн в атмосфере: 

 


;                      


находим по графику рис.7



 дБ;








рис.7 Зависимость  коэффициента поглощения для кислорода и водя­ных паров от частоты


Затухание сигнала в гидрометеорах:  ,   и lЗ  найдем по графикам рис.8 и рис.9


дБ.

 рис.8 Частотная зависимость коэффициента поглощения сигнала в дожде различной интенсивности.







рис.9 Зависимость эквивалентной длины пути сигнала в дожде различной интенсивности от угла места антенны земной станции.


     дБ.


Полное затухание на участке равно:


 дБ.


 

Аналогично произведем расчет на участке: ИСЗ – г. Москва



Угол места:

тогда


Найдем расстояние от передатчика до приемника ИСЗ

  => км;


тогда дБ;


Поглощение волн в атмосфере: 


;                         ;


находим по графику рис.7


 дБ;


Затухание сигнала в гидрометеорах:  ,   и lЗ  найдем по графикам рис.8 и рис.9


дБ.


 дБ.


Полное затухание на участке равно:


 дБ.













4. Заключение


В ходе выполнения курсовой работы были разработаны структурные схемы передающего и приёмного тракта наземных станций и структурная схема бортового ретранслятора ИСЗ. Кроме того, было рассчитано затухание сигнала при его распространении от передатчика, расположенного в городе Рим (Италия) до геостационарного ИСЗ и от этого ИСЗ до приемника, находящегося в городе Москва (Россия). Были описаны особенности построения и характеристик систем многостанционного доступа с ИКМ и разделением каналов по времени, а также бортового ретранслятора ИСЗ.

Вцелом разработка и использование спутниковых систем является весьма перспективной задачей, тем более что применяемые для производства спутника и батарей материалы позволяет существенно увеличить срок службы спутника на орбите.





























5. Список литературы

 

1.     Радиорелейные и спутниковые системы передачи под ред. А.С. Немировского. – М.: Радио и Связь, 1986.

2.     Садомовский А.С. Радиосистемы передачи информации: Учебное пособие. – Ульяновск: УлГТУ, 2001.

3.     Системы спутниковой связи под ред. Л.Я. Кантора: Учеб. пособие для вузов . – М.: Радио и Связь, 1992.

4.     Спутниковая связь и вещание, справочник под ред. Л.Я. Кантора. – М.: Радио и Связь, 1988.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.