Меню
Поиск



рефераты скачать Система наведения ракеты ФКР-1

4.3. Блок НБ-3 (приемник).

Блок НБ-3 (приемник) является вторым блоком канала приема сигнала. В блоке размещены элементы, входящие в следующие каналы функциональной схемы:

·        канал приема сигналов.

·        канал управления.

·        канал формирования стробирующих импульсов.


4.3.1. Канал приема сигналов

В канал приема сигналов входят следующие элементы блока НБ-3:

·        усилитель промежуточной частоты;

·        первый видеотракт, обеспечивающий работу канала управления;

·        второй видеотракт, обеспечивающий работу синхронизации и канала формирования команды 2;

·        схема АРУ;

·        схема демодуляции;

·        схема контроля СЧК.


Усилитель промежуточной частоты (УПЧ) предназначен для усиления импульсов промежуточной частоты, поступающих с предварительного усилителя. УПЧ состоит из шести каскадов, собранных на лампах Л1-Л4 и Л6, Л7. Полоса пропускания усилителя равна 9 Мгц. В первых двух каскадах УПЧ осуществляется стробирование канала приема. Стробирующие импульсы подаются на пентодные сетки ламп.

На время излучения ответного сигнала приемник запирается положительными импульсами-подавителями, которые поступают из канала синхронизации (из блока НБ-5) на катоды ламп первых двух каскадов УПЧ.

Напряжение АРУ подается на первый каскад УПЧ.

С выхода четвертого каскада УПЧ (Л4) сигнал подается в первый видеотракт, с выхода шестого каскада УПЧ (Л7) - подается в цепь контроля СЧК и во второй видеотракт.

В первом видеотракте с помощью видеодетектора (Л5) импульсы промежуточной частоты преобразуются в видеоимпульсы. Двухкаскадный видеоусилитель (Л21, Л24) обеспечивает необходимое усиление сигнала. Усиленные импульсы через катодный повторитель (Л22) подаются на детектор напряжения ошибки, являющийся входным каскадом канала управления. На первый каскад выдеоусилителя (Л21) подается напряжение АРУ, вырабатываемое детектором напряжения ошибки (Л23), выполняющим также функции детектора АРУ.

Второй видеотракт состоит из видеодетектора (Л8), двухкаскадного видеоусилителя (Л13, Л14) и двух катодных повторителей, собранных на лампе Л15.

С выхода шестого каскада УПЧ (Л7) импульсы промежуточной частоты поступают на вход видеодетектора (Л8). После детектирования импульсы усиливаются видеоусилителем (Л13, Л14) и через катодные повторители (Л15) подаются на схему АРУ и демодулятор канала приема сигналов (блок НБ-3), а также в канал синхронизации и в канал формирования команды 2 (блок НБ-5).

Схема автоматической регулировки усиления (АРУ) предназначена для автоматического поддержания постоянства среднего уровня видеоимпульсов на выходе канала приема сигналов независимо от изменения мощности сигнала на входе приемника при удалении ракеты от станции НН.

Схема АРУ состоит из дешифратора, включающего в себя линию задержки (ЛЗ-1) и каскад совпадений (Л17), двухкаскадного видеоусилителя (Л18, Л19), детектора (Л19) и трех катодных повторителей (Л16, Л20).

На выходе дешифратора сигнал появляется только в том случае, когда на его вход подается последовательность парных импульсных посылок с интервалом между импульсами в мксек. Каскад совпадений дешифратора (Л17) выдет одиночные импульсы, амплитуда которых пропорциональна входному сигналу приемника. Эти импульсы усиливаются видеоусилителем (Л18, Л19) и подаются на детектор (Л19). На нагрузке детектора образуется напряжение АРУ, которое через один из катодных повторителей (Л20) подается на сетки последних четырех каскадов предварительного УПЧ и первого каскада УПЧ. Второй катодный повторитель (Л20) подается на сетки последних четырех каскадов предварительного УПЧ и первого каскада УПЧ. Второй катодный повторитель (Л20) используется в цепях контроля работы схемы АРУ.

Схема АРУ, выполненная на лампах Д16-Л20, является общей для всего канала приема сигналов. В первом видеотракте канала приема сигналов имеется дополнительная схема АРУ, которая предназначена для повышения точности стабилизации среднего уровня видеоимпульсов управления.

Схема демодуляции предназначена для устранения амплитудной модуляции импульсного сигнала, поступающего в канал синхронизации. Схема состоит из детектора огибающей (Л23), усилителя низкой частоты (Л22) и каскада временной регулировки усиления (Л16).

С выхода второго видеотракта видеоимпульсы поступают на вход детектора огибающей (Л23). Выделенное детектором огибающей синусоидальное напряжение частоты Т гц усиливается однокаскадным усилителем низкой частоты (Л22) и подается на управляющие сетки пятого и шестого каскадов УПЧ (Л6, Л7) в качестве дополнительного смещения. Поэтому коэффициент усиления каскадов УПЧ изменяется с частотой Т гц в противофазе с огибающей усиливаемых импульсов промежуточной частоты, в результате чего глубина модуляции сигнала значительно понижается.

Назначение каскада временной регулировки усиления (Л16) состоит в следующем. Если к моменту перехода станции НБ в режим приема со стробированием сигнал станции НН еще не принимается, то должен быть осуществлен поиск и захват сигнала. Так при этом сигнал на выходе УПЧ отсутствует, схема АРУ выдает минимальное смещение и поэтому усиление УПЧ максимальное. Схема демодуляции работает как быстродействующая автоматическая регулировка усиления, ее постоянная времени значительно меньше, чем в схеме АРУ. Поэтому при приеме первой пары импульсов сигнала схема АРУ не успевает срабатывать, в результате чего в схему демодуляции подается сигнал большой амплитуды. Это вызывает появление настолько большого смещения на сетках пятого и шестого каскадов УПЧ, что на их выходе амплитуда нескольких последующих импульсов резко снижается, и захвата сигнала временным селектором может не произойти.

Каскад временной регулировки усиления запирает усилитель низкой частоты, так что напряжение смещения с выхода лампы Л22 подается на УПЧ только по истечении некоторого времени после приема первых импульсов сигнала. Это обеспечивает уверенный захват временным селектором станции НБ сигналов управления.

Схема контроля СЧК позволяет проверить правильность установления промежуточной частоты, т.е. проконтролировать работу схемы стабилизации частоты клистрона (СЧК).

Схема состоит из буферного каскада УПЧ (Л9), частотного детектора (Л10), видеоусилителя и катодного повторителя (Л11).

Импульсные сигналы промежуточной частоты через буферный каскад УПЧ (Л9) поступает на осциллограф со ждущей разверткой. Характер импульсов, наблюдаемых на экране осциллографа, зависит от величины и знака отклонения промежуточной частоты от ее номинального значения.


4.3.2. Канал управления

В канал управления входят два элемента блока НБ-3:

·        детектор напряжения сигнала ошибки (Л23)

·        усилитель низкой частоты (Л24).


Детектор напряжения сигнала ошибки (Л23) выделяет огибающую подводимых к нему видеоимпульсов, которая представляет собой синусоидальное напряжение сигнала ошибки. Это напряжение усиливается усилителем низкой частоты (Л24) и направляется в блок НБ-5.

Детектор вырабатывает также напряжение АРУ, которое подается на первый каскад видеоусилителя первого видеотракта (лампа Л21). Автоматическая регулировка усиления (лампа Л21), в дополнение к автоматической регулировке усиления ламп УПЧ, должна обеспечить независимость амплитуды напряжения ошибки от среднего уровня видеосигналов на входе приемника, чтобы амплитуда напряжения сигнала ошибки определялась только коэффициентом модуляции радиосигнала.

4.3.3. Канал формирования стробирующих импульсов.

В канал формирования стробирующих импульсов входят два элемента блока НБ-3: усилитель стробирующих импульсов (Л12) и реле включения строба (Р1), служащие для передачи стробирующих импульсов из блока НБ-4 к УПЧ канала приема сигналов.

Стробирующие импульсы на выходе усилителя имеют положительную полярность. Они поступают на первые два каскада УПЧ (Л1, Л2), отпирая их на время действия импульса.

Стробирующие импульсы передаются через контакты реле Р1. Реле управляется напряжением 27 В, подаваемым из программного механизма (блок НБ-9). При обесточенном реле, когда замкнуты контакты 1-2, канал приема сигналов открыт и стробирующие импульсы в его схему не поступают. При подаче на обмотку реле напряжения 27 В замыкаются контакты 2-3, канал приема сигналов закрывается и переходит в режим стробирования.

4.4. Блок НБ-4 (Автоселектор)

Блок НБ-4 осуществляет временную селекцию принимаемых сигналов. В автоселекторе расположены схема формирования стробирующих импульсов и схема памяти, которые составляют основную часть канала формирования стробирующих импульсов.

4.4.1. Схема формирования стробирующих импульсов.

В схему формирования стробирующих импульсов входят:

·        Кварцевый генератор (Л1);

·        усилитель-ограничитель (Л2);

·        селекторный каскад (ЛЗ);

·        усилитель-ограничитель (Л4);

·        четыре делителя частоты повторения импульсов (Л4-Л12);

·        каскад совпадений (Л13);

·        генератор стробирующих импульсов;

·        два усилителя стробирующих импульсов (Л2, Л16);

·        усилитель синхронизирующих импульсов (Л16).


Кварцевый генератор (Л1) генерирует синусоидальное напряжение с частотой fКВ, которое подается на усилитель-ограничитель (Л2). Здесь за счет ограничения синусоидальное напряжение превращается в последовательность импульсов, которая одновременно поступает на вход селекторного каскада (ЛЗ) и на каскад совпадений (Л13).

Селекторный каскад (Л13) работает в ключевом режиме и управляется усилителем-ограничителем стробируещего импульса (Л2). При отсутствии стробирующего импульса селекторный каскад открыт, и последовательность импульса с частотой fKB передается с усилителя-ограничителя (Л2) на вход второго усилителя-ограничителя (Л4). Здесь она ограничивается по амплитуде и поступает на делитель частоты повторения (Л4-Л12) с общим коэффициентом деления, равным 500.

Выходной импульс делителя подается на каскад совпадений (Л13), в котором выделяется 501-й импульс исходной последовательности. Импульс делителя за счет задержек в срабатывании его каскадов располагается по времени между 500 и 501-м импульсами первоначальной последовательности и его временное положение подвержено колебаниям из-за нестабильности каскадов делителя. Поэтому для устойчивой работы каскада совпадений выходной импульс делителя растягивается во времени в усилителе (Л12). Выходным импульсом каскада совпадений запускается генератор стробирующих импульсов (Л14, Л15).

Генератор стобирующих импульсов (Л14, Л15) представляет собой ждущий мультивибратор с одним устойчивым состоянием равновесия. Стробирующий импульс, выработанный мультивибратором, после усиления усилителем (Л16) подается в блок НБ-3 и отпирает канал приема сигналов. Одновременно стробирующий импульс закрывает селекторный каскад. При закрытом селекторном каскаде импульсы кварцевого генератора на вход делителя частоты повторения не передаются.

Из-за задержки в срабатывании генератора стробирующих импульсов, запускаемого 501-м импульсом, в делитель может проходить и 501-й импульс. Это будет приводить к случайному изменению длительности паузы между стробирующими импульсами на величину одного периода колебаний кварцевого генератора. Для устранения этого явления селекторный каскад (ЛЗ) до запирания его стробирующим импульсом предварительно закрывается выходным импульсом делителя, который начинается ранее прихода 501-го импульса.

Схема формирования стробирующих импульсов может работать в двух режимах: в режиме поиска и в режиме слежения. Длительность стробируюущего импульса в режиме поиска определяется собственными параметрами мультивибратора и составляет 70-100 мксек., если за это время сигнал от станции НН не будет принят, то в схеме мультивибратора произойдет опрокидывание, и стробирующий импульс закончится. При этом селекторный каскад вновь откроется, делитель частоты повторения начнет работать и после 500-го импульса входной импульс делителя через каскад совпадений снова запустит генератор стробирующих импульсов. Таким образом, период повторения стробирующим импульсов составит:

ТСТР = tСТР + tП

tСТР  -  длительность стробируюущего импульса (70-100) мксек;

tП       -  длительность   паузы,   равная   пятистам   периодам   колебания  кварцевого генератора.


В режиме поиска стробирующий импульс должен смещаться во времени относительно сигнала. Для этого период повторения стробирующего импульса ТСТР должен отличаться от периода повторения сигнала ТС. В станции НБ выбрано

ТСТР > ТС

где ТС = 1/Н - период повторения импульсного сигнала (рис. 11, а).

Когда стробирующий импульс совпадает во времени с моментом прихода сигнала НН, в канале синхронизации (в блоке НБ-5) с некоторой задержкой формируется синхронизирующий импульс, который через усилитель (Л16) подается на генератор стробирующих импульсов и срывает его работу. По истечении времени, равного (tП < TС) с момента окончания стробируюущего импульса, генератор стробирующих импульсов будет вновь запущен, а следующий импульс сигнала оборвет стробирующий импульс. В результате стробирующий импульс будет привязан во времени к сигналу станции НН и схема формирования стробирующих импульсов начнет работать в режиме слежения (рис. 11,б).

Длительность стробирующих импульсов в режиме слежения t'СТР определяется разностью между периодом повторения сигнала и длительностью паузы:

t'СТР = TС - tП

Она выбрана с таким расчетом, чтобы наиболее продолжительная трех импульсная кодовая посылка станции НН (опорного сигнала или сигнала команды 2) укладывалась с необходимым запасом на длительности стробирующего импульса.

4.4.2. Схема памяти

Схема памяти служит для сохранения режима слежения схемы формирования стробирующих импульсов и предотвращения перехода схемы в режим поиска при кратковременном нарушении приема сигналов станции НН.

В схему памяти входят:

·        каскад совпадений (Л13);

·        видеоусилитель (Л15);

·        блокинг-генератор (Л17);

·        видеоусилитель (Л18) с дифференцирующей цепью;

·        разрешающий каскад (Л19);

·        каскад антисовпадений (Л19);

·        катодный повторитель (Л17);

·        накопительный каскад (Л18);

·        дифференцирующая цепь;

·        мультивибратор (Л20).


Каскад совпадений схемы памяти (Л13) выделяет 501-й импульс кварцевого генератора. Выделенный импульс используется для запуска блокинг-генератора (Л17). На этот же блокинг-генератор через усилитель (Л15) подаются импульсы кварцевого генератора, которые используются в качестве калибрационных при установке длительности импульса. Длительность импульса блокинг-генератора устанавливается равной шести периодам частоты fКВ.

После усиления и дифференцирования импульсы блокинг-генератора подаются на вход разрешающего каскада (Л19), который пропускает только положительные импульсы, соответствующие заднему фронту импульса блокинг-генератора (импульсы памяти). Разрешающий каскад управляется накопительным каскадом (Л18). Импульсы памяти поступают на каскад антисовпадения (Л19) только тогда, когда напряжение на накопительном каскаде имеет некоторую заданную величину, при которой разрешающее устройство открыто.

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.