Меню
Поиск



рефераты скачать Расчет настроек автоматического регулятора

0,9353

17

8,0000

0,3947

46

22,5000

0,9420

18

8,5000

0,4312

47

23,0000

0,9486

19

9,0000

0,4594

48

23,5000

0,9552

20

9,5000

0,4942

49

24,0000

0,9602

21

10,0000

0,5290

50

24,5000

0,9652

22

10,5000

0,5622

51

25,5000

0,9701

23

11,0000

0,5857

52

25,5000

0,9751

24

11,5000

0,6153

53

26,0000

0,9801

25

12,0000

0,6434

54

26,5000

0,9851

26

12,5000

0,6716

55

27,0000

0,9900

27

13,0000

0,6899

56

27,5000

0,9950

28

13,5000

0,7131

57

28,0000

1,0000

29

14,0000

0,7347





 

 

5. Аппроксимация методом Симою.


     С помощью программы ASR в пункту аппроксимации последовательно считаем площади каждой из кривой разгона для последующего получения уравнения передаточной функции.


   Для кривой разгона по внешнему контуру для объекта второго порядка получаем следующие данные:

              Значения площадей:

  F1=       6.5614

  F2=      11.4658

  F3=     -4.5969

  F4=     -1.1636

  F5=      44.0285

  F6=     -120.0300


Ограничимся второй площадью. F1<F2, а F3 отрицательная. Следовательно для определения передаточной функции необходимо решить систему уравнений:

  a1 = F1 + b1

  a2 = F2 + b2 + b1 F2

  a3 = F3 + b3 + b2 F1 + b1 F2

 

  a1 = 6.5614 + b1

  a2 = 11.4658 + b1 6.5614

    0 = - 4.5969 + b1 11.4658


Решив систему получаем : b1 = 0.4

                                            a1 = 6.9614

                                            a2 = 14.0904

Тогда передаточная функция объекта второго порядка по внешнему контуру имеет вид:

 

                      0.4 s

W(s)=-----------------------------

                         2

          14.0904 s  + 6.9614 s + 1








   Для кривой разгона по внутреннему контуру для объекта второго порядка получаем следующие данные:

  Значения площадей:

  F1=      9.5539

  F2=     24.2986

  F3=    -16.7348

  F4=    -14.7318

  F5=    329.7583

  F6=  -1179.3989

 

Для определения передаточной функции решаем систему, так как F3<0.

  a1 = 9.5539 + b1

  a2 = 24.2986 + 9.5539 b2

  0   = -16.7348 + b1 24.2986


Решив систему получаем : b1 = 0.6887

                                            a1 = 10.2426

                                            a2 = 30.8783

Тогда передаточная функция объекта второго порядка по внутреннему контуру имеет вид:

                          0.6887 s + 1       

 W(s) = -----------------------------

                           2

             30.8783s + 10.2426 s + 1


Для кривой разгона по заданию для объкта третьего порядка с запаздыванием  получаем следующие данные:

  Значения площадей:

 F1=     10.6679

 F2=     38.1160

 F3=     30.4228

 F4=    -46.5445

 F5=    168.8606

 F6=    -33.3020


Так как F3<F2 и положительна, то ограничиваемся второй площадью и передаточная объекта третьего порядка по управлению имеет вид:

                          1

W(s) =-------------------------------

                           2

            38.1160 s + 10.6679 s + 1




6. Проверка аппроксимации методом Рунге - Кутта.


В программе ASR в пункте передаточная функция задаем полученные  передаточные функции. И затем строим графики экспериментальной и аналитической кривых разгона (по полученной передаточной функции).

 

                      6.1 Для кривой разгона по внешнему контуру


Устанавливаем для проверки методом Рунге-Кутта конечное время 27c,  шаг 0,5с.


 

6.2 Для кривой разгона по внутреннему контуру


Устанавливаем конечное время 39с, шаг 0,5с.


                           6.3  Для кривой разгона по основному каналу


При задании передаточной функции учитываем чистое запаздывание 0,08с.

Устанавливаем конечное время 32с, шаг изменения 0,5с.



Получили, что кривые разгона практически одинаковы, следовательно аппроксимация методом Симою сделана верно.

6.4 Сравнение экспериментальных и исходных  передаточных функции:

 


  объект                           исходная                               экспериментальная

                                     передаточная                               передаточная

                                        функция                                        функция

 


  второго порядка                             1                                                                               0.6887 s

  по возмущению    W(s)= ------------------                                     W(s)= -----------------------------

                                                       2                                                                                    2

                                               36 s + 12 s + 1                                                   30,8783 s + 10.2426 s + 1

 


 второго порядка                              1                                                                               0.4 s

 по заданию              W(s)= ------------------------------                  W(s)= -------------------------------

                                                                 2                                                                          2       

                                                16,1604 s + 8,04 s + 1                                     14.0904 s + 6.9614 s + 1

 


 третьего порядка                               1                                                                               1   

 с запаздыванием     W(s)= -------------------------------------          W(s)= -------------------------------

 по управлению                                   3               2                                                             2    

                                                91.125 s + 60.75 s + 13.5 s + 1                        38.1160 s + 10.6679 s + 1

      

Анализируя таблицу можно сделать вывод о том, что передаточные функции второго порядка практически одинаковы, а третьего порядка значительно отличаются.

 

6.5 Сравнение экспериментальных и фактических кривых разгона.


Для исходных передаточных функций с помощью программы ASR, пунктов аппроксимация (создать передаточную функцию и изменить время) получим координаты кривых разгона и сравним их с экспериментальной кривой:

- по внешнему контуру

- по внутреннему контуру


- по основному каналу


Полученные значению передаточных функций не значительно отличают от фактических, что говорит о достаточно не большой погрешности между фактическими и экспериментальными данными.                                                                                    


Расчет одноконтурной АСР методом Роточа.


В программе Linreg задаем параметры объекта. Выбираем в качестве регулятора ПИ- регулятор. И рассчитываем его настройки:


а) для экспериментальной передаточной функции.

В программе Linreg задаем передаточную функцию объекта второго порядка с запаздыванием. Выбираем ПИ-регулятор и определяем его настройки.

Получаем kp = 1.0796

                 Tu = 8.0434

В программе SIAM пользуясь следующей схемой для одноконтурной системы

Подаем скачек на сумматор, стоящий после запаздывания и получаем график переходного процесса по заданию:


Подаем скачек на сумматор, стоящий перед объектом и получаем график переходного процесса по возмущению:


б) для фактической передаточной функции

В программе Linreg задаем передаточную функцию объекта третьего порядка с запаздыванием. Выбираем ПИ-регулятор и определяем его настройки.

Получаем kp = 0.8743

                 Tu = 8.3924

В программе SIAM пользуясь схемой для одноконтурной системы получаем

- переходный процесс по заданию:

 

Расчет каскадной АСР методом Роточа.

 

а) для экспериментальной передаточной функции.


Первоначально определим настройки внутреннего регулятора для внутреннего контура с передаточной функцией W1(s).

                 0.4s + 1

W1(s) = --------------------------

                            2

              14.0904s + 6.9614s +1

С помощью программы ASR получим АФХ по передаточной функции и определим значения u(m,w), v(m,w), a(m,w), w.


v(m,w)

u(m,u)

a(m,w)

w

kp

Tu

1,0000

0,0000

0,0000

0,0000

0,0000

0,0000

1,0211

-0,0678

1,0234

0,0100

15,0783

0,0109

1,0360

-0,1398

1,0454

0,0200

7,4774

0,0211

1,0439

-0,2151

1,0659

0,0300

4,9709

0,0307

1,0442

-0,2931

1,0845

0,0400

3,7336

0,0395

1,0361

-0,3728

1,1012

0,0500

3,0067

0,0475

1,0194

-0,4531

1,1156

0,0600

2,5367

0,0547

0,9936

-0,5329

1,1275

0,0700

2,2147

0,0609

0,9587

-0,6108

1,1368

0,0800

1,9877

0,0660

0,9147

-0,6857

1,1431

0,0900

1,1826

0,0701

0,8619

-0,7559

1,1464

0,1000

1,1713

4,4754

0,8008

-0,8203

1,1464

0,1100

1,6386

4,5739

0,7323

-0,8775

1,1429

0,1200

1,1584

0,0749

0,6576

-0,9263

1,1360

0,1300

1,5905

0,0737

0,5778

-0,9658

1,1254

0,1400

1,6169

0,0711

0,4945

-0,9953

1,1114

0,1500

1,6842

0,0668

0,4095

-1,0143

1,0938

0,1600

1,8064

0,0609

0,3243

-1,0229

1,0731

0,1700

2,0137

0,0533

0,2407

-1,0214

1,0493

0,1800

2,3750

0,0438

0,1601

-1,0103

1,0229

0,1900

3,0885

0,0324

0,0840

-0,9906

0,9942

0,2000

5,0095

0,0000

0,0134

-0,9635

0,9635

0,2100

26,1125

0,0034

Так как настройки регулятора не могут быть отрицательными то ограничимся 3 квадрантом. И с помощью программы на BASIC рассчитаем оптимальные настройки для ПИ - регулятора методом Стефани по следующим формулам:

          A^2(m,w)                                    m           1   

Tu = ------------------------ ,     kp = ---------- -  ----------

         w(m^2+1)* v(m,w)                 v(m,w)      u(m,w)

наибольшее отношение kp/Tu и будет оптимальными настройками.

Получили что kp = 1.712763

                        Tu = 4.47537

В программе SIAM с помощью схемы для одноконтурной системы без запаздывания получаем переходные процессы по заданию и по возмущению:

     




Сравнивая график кривой разгона по основному каналу и переходный процесс внутреннего контура каскадной системы делаем вывод о том, что за время запаздывания основного контура переходный процесс во внутреннем контуре затухнуть не успевает, следовательно передаточная функция эквивалентного объекта имеет вид:

                    Wоб(s) * Wp1(s)

Wоб(s) = --------------------------- =

                1 + Wоб1(s) * Wp1(s)


                  1                                              1

--------------------------------- * (1,7128 + ---------- )

               2                                               4,4754s    

 38,1160s + 10,6679s + 1

-------------------------------------------------------------- =

               0,4s + 1                                        1

1 + ---------------------------  * (1,7128 + ----------)      

                    2                                         4,4754s

      14,0904s + 6,9614s + 1


                   3                2

    107.9987s + 67.4444s + 14.6247s + 1

= ---------------------------------------------------------------------------

                    5                   4                3                  2  

   4116.4785s + 3186.9547s + 969.316s + 138.1861s + 15.7294s + 1


Определяем настройки ведущего регулятора. Для ПИ-регулятора получаем:

kp = 0.1249

Tu = 5.4148

В программе SIAM с помощью схемы каскадной системы получаем переходный процесс по заданию:





С помощью схемы каскадной системы получаем переходный процесс по возмущению:



          

б) для реальной передаточной функции.


Определим настройки внутреннего регулятора для объекта второго порядка с передаточной функцией

                         1

W1(s) =-------------------------

                            2

              16,1604s + 8.04s + 1

Получаем следующие настройки регулятора: kp = 4.3959

                                                                          Tu = 6.5957

В программе SIAM пользуясь схемой одноконтурной системы без запаздывания получаем графики переходных процессов по заданию и по возмущению:


Сравнивая график кривой разгона по основному каналу и переходный процесс внутреннего контура каскадной системы делаем вывод о том, что за время запаздывания основного контура переходный процесс во внутреннем контуре затухнуть не успевает, следовательно передаточная функция эквивалентного объекта имеет вид:

                Wоб(s) * Wp1(s)

Wоб(s) = --------------------------- =

                1 + Wоб1(s) * Wp1(s)


                  1                                              1

--------------------------------- * (4.3959 + ---------- )

           3             2                                     6.5957s    

91.125s + 60.75s + 13.5s + 1

-------------------------------------------------------------- =

               1                                            1

1 + ------------------------  * (4.3959 + ----------)      

                   2                                       6.5957s

      16.1604s + 8.04s + 1


                   3                  2

    468.5449s + 249.2673s + 37.0334s + 1

= --------------------------------------------------------------------------------------------

                6                     5                     4                   3                    2  

42696.154s + 49705.969s + 25770.6474s + 7229.3112s + 1076.6779s+71.4868s+  1


Определяем настройки ведущего регулятора. Для ПИ-регулятора получаем:

 kp = 1.2822

 Tu = 6.3952

В программе SIAM с помощью схем для каскадной системы получим переходные процессы по заданию и по возмущению:

 

 

 

 

Расчет комбинированной АСР.

 

а) для эксперементальной передаточной функции

 Расчет компенсирующего устройства

В программе SIAM с помощью смоделированной схемы комбинированной системы без компенсатора получим соответствующий переходный процесс:

Определим передаточную функцию фильтра для структурной схемы где выход компенсатора поступает на вход регулятора по формуле:

               Wов(s)

Wф(s) = --------------------- ,

               Wоб(s) * Wр(s)

где Wов(s) - передаточная функция канала по возмущению,

      Wоб(s) - передаточная функция объекта,

     Wp(s) - передаточная функция регулятора

                    0,6887s + 1

                -----------------------------

                              2 

               30.8783 s + 10.2426 s + 1

Wф(s) = ---------------------------------------------------------- =

                                     1                                           1

               ------------------------------- * (1.0796 + ---------- )

                               2                                            8.0434 s

                38.8783 s + 10.6679 s + 1


                               4                 3                 2

               232.5099 s + 40.1406 s + 98.6173 s + 8.6837 s

           = -----------------------------------------------------------

                               3                  2

              268.1379 s + 119.8220 s + 18.9263 s + 1

Настроечные параметры компенсирующего устройства будут оптимальными, если АФХ фильтра равны нулю при нулевой и резонансной частоте.

б) для реальной передаточной функции





 




 


Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.