Меню
Поиск



рефераты скачать Проектирование радиолокационной станции для обнаружения надводных целей в пределах речного шлюза Уст...

mопт=(0,05…0,1)aф=0,1·50=5


Выбираем фильтр Чебышева в виде двух последовательно соединенных П-цепочек (рис. 2.6.1)

Рис 2.6.1 – Эквивалентная схема ВКС.


Выходная колебательная система последовательно трансформирует сопротивление нагрузки сначала в R*Н, а затем в Rэк. Причем:


Для расчета LC элементов сначала рассчитаем вспомогательные величины R01 R02 соответственно для первой и второй П-цепочки. Причем R01 (R02) выбирают в 3…5 раз меньше по сравнению с наименьшим из сопротивлений Rэк и R*Н (R*Н и RА).


Рассчитаем сопротивления элементов цепи:


Исходя из найденных реактивных сопротивлений и рабочей частоты передатчика, найдем значения емкостей и индуктивностей элементов.


тогда:


Фактическая емкость C1 отличается от расчетной на емкость Сск известную из расчетов оконечного каскада, который нагружается на выходную колебательную систему, и так, С1=С1расч-Сск=0,67-0,08=0,59 нФ. Кроме того, емкости С21 и С22 собой образуют одну емкость С2=С21+С22=0,62+0,5= =0,112 нФ. Все остальные элементы сохраняют свои значения.

Рис. 2.6.2 - ВКС



Определим КПД системы. Коэффициент полезного действия первой:



и второй:

цепочек, где Q=500 добротность катушек индуктивности.

Определяем нагруженные добротности первой и второй П-цепочек фильтра:


Фактический коэффициент фильтрации первой и второй цепочки:


Общий коэффициент фильтрации:

то есть полученный коэффициент фильтрации удовлетворяет требованию на мощность побочного излучения.


8 РАСЧЕТ АНТЕННО-ФИДЕРНОЙ СИСТЕМЫ

В данном разделе произведем более подробный расчет антенно-фидерной системы.

Радиолокационная станция имеет две одинаковые однозеркальные параболические антенны. Определим их геометрические размеры.

Для начала определим тип фидера его шумовую температуру и КПД.

В качестве линии передачи выбираем прямоугольный волновод с сечением 2,8´1,3 см и коэффициентом затухания α=0,0794 дБ/м

Тафу=67°alф=67°·0.0794·30=160˚.

где lф-длина фидерой линии (принимаем расстояние от технического здание до шлюза, с запасом)

Тафу=290°(1-КПД);  КПД=1-(Тафу /290°)=1-0,55=0,45

Вычисление шумовой температуры антенной системы выполняется по формулам

Та=Тафу+КПД·ТН.СР­+КПД·То(1-a1+a1·u)=

=160+0,45·10­+0,45·290(1-0,925+0,925·0,025)=177,3

Ta=177,3˚K

Т=Та­+Тпр

T=2277,3˚K

Определим диаметр раскрыва зеркала. Ширина диаграммы направленности в случае неравномерного возбуждения раскрыва зеркала определяется:

Q0,5Е = 1,3l / l1­­­

Q0,5H = 1,2l / l2­­­

где   2Q0,5Н ,2Q0,5E  – ширина ДН в плоскостях Н и Е соответственно, рад;

l - длина волны;

l1 и l2­ –­ горизонтальный и вертикальный размеры антенны;

­l1­=1.3 l/Q0,5E­­­=(1,3*3*108/7,5*109)/ 0,035=1,49 м

l2­=1.2 l/Q0,5H­­­=(1,2*3*108/7,5*109)/ 1,41=0,14 м


Определение угла раскрыва и фокусного расстояния зеркальной антенны.


С точки зрения оптимизации геометрии антенны по максимальному отношению сигнал/шум необходимо произвести следующий расчет:

Чувствительность g определяется формулой g=Sa2a3hg’

где первые четыре коэффициента не зависят от угла раскрыва Y0,а g’ вычисляется:

g’=ga1/(T1+КПД*Т0*(cosn+1Y0+u(1-cosn+1Y0)))

где Т1=Тпр+Т0(1-КПД)+КПД Тнср

Т0=290°К

u=(0.2-0.3)-коэффициент учитывающий “переливание” части мощности облучателя через края зеркала,

a1=1-cosn+1Y0

S=0,25pl1l2 - площадь апертуры зеркала


n=6 – число характеризующее тип облучателя, в данном случае пирамидальный рупор.n=0.81;

Строим график функции g(Y0) и по максимальному значению определяем угол раскрыва зеркала.


Рисунрк 8.1 – Зависимость отношения сигнал/шум от угла раскрыва


Из зависимости видно, что функция γ(Y0) достигает максимума при  Y0=0,81 радиан (46˚).


Зная угол раскрыва и поперечные размеры можно найти фокусное расстояние зеркала:

Таким образом, основные геометрические размеры зеркала рассчитаны.

Рассчитаем геометрические и электродинамические характеристики облучателя.

Расчёт сводится к определению геометрических размеров облучателя, при которых уменьшение амплитуды поля на краю раскрыва зеркала происходит до одной трети амплитуды поля в центре раскрыва, и диаграммы направленности облучателя.

Рупор пирамидальный


Рисунок 8.2 – Облучатель. Пирамидальный рупор


Диаграммы направленности рупорной антенны рассчитываются по формулам:

В Е плоскости (Рис 2.7.3 а)


В Н плоскости (Рис 2.7.3 б)


Где β0=2π/λ – волновое число β0=2*3,14/(3*108/7,5*109)=157,1

а

б

Рисунок 8.3 – ДН облучателя: а – в Е плоскости; б – в Н плоскости.

Множители ap и bp в уравнениях диаграмм направленности – поперечные размеры рупора выбираются из условия спадания поля на краю раскрыва до одной третей по отношению к полю в центре раскрыва. В данном случае ap=5,15 см и bp=3,76 см.

Для оптимального рупора (наибольший КНД) продольные и поперечные размеры связаны между собой соотношениями:


в Е плоскости


в Н плоскости


Распределение поля в апертуре зеркала.

Расчёт распределения поля в апертуре зеркала осуществляется по следующим формулам:


Где F0(Ψ) - диаграмма направленности облучателя

            Ψ0 ­– угол раскрыва

            Ψ – текущий угол


Таким образом, поле в апертуре зеркала распределено по следующим законам:

в Е плоскости (рисунке 8.4 а)


в Н плоскости (рисунке 8.4 б)





           а

б

Рисунок 8.4 – Распределение поля в апертуре зеркала: а – в Е плоскости; б – в Н плоскости.


Теперь рассчитаем пространственную диаграмму направленности и определим параметры параболической антенны.


Инженерный расчет пространственной диаграммы направленности параболической антенны часто сводится к определению диаграммы направленности идеальной круглой синфазной площадки с неравномерным распределением напряженности возбуждающего поля. В данном случае распределение напряженности возбуждающего поля в основном определяется диаграммой направленности облучателя в соответствующей плоскости. Выражение для нормированной ДН зеркальной параболической антенны при этом имеет вид:

где J1 и J2 – цилиндрические функции Бесселя первого и второго порядка;


k1=Екр/Еmax=cos2(Ψ0/2)Fобл(Ψ0) – коэффициент, показывающий во сколько раз амплитуда возбуждающего поля, на краю раскрыва меньше амплитуды в центре раскрыва, в соответствующей плоскости с учётом различий расстояний от облучателя до центра и края зеркала.


Таким образом, пространственная ДН принимает вид в плоскости Е рисунок 8.5 а. и в плоскости Н рисунок 8.5 б.


Рисунок 8.5 а – ДН антенны в Е плоскости.

Рисунок 8.5 б - ДН антенны в Н плоскости.


Таким образом, реальная ширина диаграммы направленности составляет: в горизонтальной плоскости 0,034 радиана или 1,97˚;

в вертикальной плоскости 1,54 радиана или 88,2˚;

что вполне удовлетворяет требованиям.

  9 УТОЧНЕННЫЕ ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЛС


В вышеприведенных пунктах дипломного проекта были рассчитаны основные тактико-технические характеристики радиолокационной станции обзора водной поверхности речного шлюза.

Теперь учтем влияние метеорологических условий среды на работу радиолокационной станции, а точнее, их влияния на характеристики обнаружения.

На пути распространения зондирующего и отраженного сигнала могут быть такие метеообразования как дождь или туман.

Из рисунков 5.6 и 5.7 [12] находим коэффициенты поглощения энергии радиоволн в различных средах. Зная длину волны l=4 см, зададимся наихудшими условиями: сильный дождь (16 мм/ч), туман с видимостью 30м и так же учтем затухание в кислороде. Поглощение энергии радиоволн с данной длиной волны в парах воды несущественно, поэтому его можно не учитывать.

В итоге суммарный коэффициент поглощения равен:


Общее затухание энергии на пути распространения, равном 2км (так как учитывается распространение сигнала от передающей антенны до цели и от цели до приемной антенны), составит 0,41 дБ или 1,01 раза.


Тогда мощность полезного эхо-сигнала на входе приемника составит:



где РSr – мощность сигнала на входе приемника без учета затухания при распространении, известно из главы 2.2; и отношение сигнал/шум составит:


где РNr – мощность шумов на входе приемника.

Зная отношение сигнал/шум и необходимую вероятность правильного обнаружения, находим из графика рис 4.3 [12] вероятность ложной тревоги, Рлт=1,1·10-4, что практически совпадает со значением в задании и не оказывает существенного влияния на параметры обнаружения.

Тактико-технические характеристики спроектированной радиолокационной станции сведены в таблицу 2.8.1.





Таблица 9.1 – Тактико-технические характеристики РЛС


Параметр

Значение

 

Дальность действия, м

1000

 

Вероятность правильного обнаружения

0,95

 

Вероятность ложной тревоги

1,1·10-4

 

Мощность передатчика, мВт

122

Ширина диаграммы направленности в вертикальной плоскости, ˚

88

Ширина диаграммы направленности в горизонталной плоскости, ˚

1,97

Период обзора приемной антенны, с

1

Период обзора передающей антенны, с

45

Время обновления информации, с

45

Частота, ГГц

7,5

Раскрыв антенны в горизонтальной плоскости, м

1,4

Раскрыв антенны в вертикальной плоскости, м

0,04

Зона обзора по азимуту, ˚

90

ЭПР целей,

5

Разрешение по угловой координате

2

Индикация цели

Яркостная отметка, с цифровыми данными о скорости


Итак, спроектированная радиолокационная станция обнаружения надводных целей в речном шлюзе по своим параметрам удовлетворяет техническому заданию и выполняет возложенные на неё функции.


10 БИЗНЕС-ПЛАН


10.1 Сущность проекта.


Сущность проекта заключается в проектировании радиолокационной станции для обеспечения безопасности движения речного транспорта в шлюзовой камере. Для организации движения речного транспорта необходимо знать их расположение и характеристики движения. Но в речном шлюзе, представляющим собой узкий и глубокий канал, не всегда можно получить такую информацию с помощью лишь визуального наблюдения, как из-за характерных размеров шлюза, так и неблагоприятных метеорологических условий или времени суток. Можно было бы использовать видео наблюдение, но оно так же не дает полноценной оценки обстановки, а увеличение числа видеокамер ведет к большой трудоемкости в обслуживании и частым поломкам системы видеонаблюдения. В таком случае целесообразно применять радиолокацию.

Усть-Каменогорск является промышленным городом, располагающимся на реке Иртыш, и большое количество грузовых и пассажирских перевозок осуществляется по реке. То есть весь транспорт пользуется шлюзом для перехода из Усть-Каменогорского водохранилища в Иртыш.




10.2 Характеристика проекта


Проектирование производится для Усть-Каменогорской гидроэлектростанции, плотина которой имеет однокамерный шлюз длиной сто метров и шириной восемнадцать. Разность высот воды между водохранилищем и рекой составляет около сорока метров. шлюз однокамерный, а перепад уровней воды достаточно большой, что и приводит к трудностям слежения за происходящим при минимальном уровне воды в камере.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.