Меню
Поиск



рефераты скачать Проектирование модуля АФАР

Проектирование модуля АФАР

московский государственный ордена ленина И ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ
авиационный институт имени СЕРГО ОРДЖОНИКИДЗЕ

(технический университет)

 


факультет радиоэлектроники ла

Кафедра 406

 

 

 

 

 

 

 

 

 

 

 

 

 

 


расчетно-пояснительная записка

к курсовому проекту по дисциплине

 

«радиопередающие устройства»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнил:  Г. В. СУВОРОВ,

гр. 04-517


Преподаватель:  е. м. добычина

 

 

 

 

 

 

 

 

москва

1997

МОСКОВСКИЙ ОРДЕНА ЛЕНИНА И ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ
АВИАЦИОННЫЙ ИНСТИТУТ имени СЕРГО ОРДЖОНИКИДЗЕ

 


Факультет радиоэлектроники ЛА (№ 4)

Кафедра 406

 

 

 

 

 

 

 

 

 

ЗАДАНИЕ № 24


На курсовой проект по РАДИОПЕРЕДАЮЩИМ УСТРОЙСТВАМ студенту Суворову Г. В. учебной группы 04-517. Выдано 13 октября 1997 г. Срок защиты проекта 22 декабря 1997 г.




Тема проекта:

Модуль АФАР


Исходные данные:

1. Назначение передатчика — передающий модуль;

2. Мощность: Pвых=0,5 Вт; Pвх£20 мВт.

3. Диапазон частот: fвых=0,5 ГГц; fвх=0,25 ГГц.

4. Характеристика сигналов, подлежащих передаче: ЧМ-сигнал.

5. Место установки — борт ЛА.

6. Rнапр=50 Ом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Руководитель проекта: Е. М. Добычина



 
 
СОДЕРЖАНИЕ
1. Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. расчет Структурной схемы модуля АФАР . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3. Методики расчета каскадов модуля . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1. Методика расчета режима транзистора мощного СВЧ усилителя мощности . . . . . . . . . . .6
3.2. Методика расчета режима транзистора мощного СВЧ умножителя частоты . . . . . . . . . . 11
4. Результаты расчетов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1. Расчет усилителя мощности. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4.1.1. Расчет режима работы активного прибора (транзистора) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2. Расчет элементов принципиальной схемы усилителя мощности . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2. Расчет умножителя частоты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1. Расчет режима работы активного прибора (транзистора) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2. Расчет элементов принципиальной схемы умножителя частоты . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3. Расчет согласующих цепей . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1. Расчет входной согласующей Г-цепи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.3.2. Расчет межкаскадной согласующей Г-цепи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.3.3. Расчет выходной согласующей П-цепи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5. конструкция модуля АФАР . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1. Выбор элементной базы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2. Выбор типоразмера печатной платы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3. Технология изготовления печатной платы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4. Конструкция корпуса модуля АФАР . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Приложение 1
Литература





1. Введение

На современном этапе развития радиоустройств СВЧ все большее применение находят передающие, приемные и приемопередающие активные фазированные антенные решетки (АФАР), в которых излучатели (или группа излучателей) связаны с отдельным модулем, содержащим активные элементы в виде различного типа генераторных и усилительных каскадов и преобразователей частоты колебаний, а также пассивные умножители частоты.

В передающей АФАР активная часть отдельного модуля, возбуждаемого от общего задающего генератора, фактически имеет функциональную схему, аналогичную схеме усилительно-умножительного СВЧ-тракта радиопередающего устройства, выполненную на генераторах с внешним возбуждением. В качестве активных приборов этих генераторов во многих практических случаях используются полупроводниковые СВЧ-приборы, позволяющие повысить надежность и долговечность модулей АФАР по сравнению с модулями на электровакуумных СВЧ-приборах, при обеспечении средней выходной мощности модуля до десятков и сотен ватт (при использовании схем сложения СВЧ-мощностей) в дециметровом диапазоне и до десяти ватт в сантиметровом диапазоне.

В том случае, когда частота колебаний на выходе модуля в целое число раз больше, чем на его входе, один из генераторных каскадов модуля должен быть умножителем частоты. Функциональная схема передающей АФАР, в модулях которой применены умножители частоты, приведена на рис. 1.

Введение умножителя частоты в модуль АФАР позволяет на выходе модуля получить колебания с определенной мощностью на тех частотах, на которых полупроводниковый усилитель уже неработоспособен. Сказанное в наибольшей степени относится к мощным усилителям на транзисторах, предельные рабочие частоты которых в настоящее время не превышают 6-7 ГГц. Поэтому малогабаритные модули АФАР дециметрового диапазона волн на полупроводниковых приборах, построенные на основе транзисторного усилителя мощности и последующего умножителя частоты, имеют генераторную часть.

Обычно при проектировании генераторной части модуля АФАР с умножением частоты бывают заданы Pвых, fвых, fвх, а также значение Pвх. В результате проектирования определяется число умножительных и усилительных каскадов в генераторной части модуля, типы активных приборов и электрических схем, используемые в каскадах, значения параметров режима активных приборов и элементов схем каскадов, а также вид конструктивного выполнения каскадов.


2.  расчет Структурной схемы модуля АФАР

Структурная схема модуля АФАР представлена на рис. 2.

Имея заданную выходную мощность Pвых, зададимся контурными КПД согласующих цепей (СЦ1, СЦ2, СЦ3) (ηк СЦ1 = ηк СЦ2 = ηк СЦ3 = ηк СЦ = 0,9) и найдем мощность на выходе умножителя частоты:

.


Зная выходную мощность умножителя частоты, коэффициент умножения и входную частоту, с помощью программы MULTIPLY, разработанной на каф. 406, выберем транзистор и рассчитаем его режим работы (результаты этих расчетов даны в п. 4.1.1.). В числе прочих результатов программа выдает коэффициент усиления по мощности KУЧ=9,958, используя который, мы вычисляем мощность на входе умножителя частоты, совпадающую, разумеется с мощностью на выходе СЦ2 (Pвых СЦ2):

.

Поскольку, как упоминалось выше, мы задали контурный КПД согласующих цепей равным ηк СЦ = 0,9, то мощность на входе СЦ2 Pвх СЦ2, равная мощности на выходе усилителя мощности Pвых УМ, равна:

.

Теперь, зная мощность на выходе усилителя мощности (Pвых УМ) и зная его рабочую частоту f=0,25 ГГц, с помощью программы PAMP1, также разработанной на каф. 406, выбираем активный прибор (транзистор) и рассчитываем его режим работы для СВЧ усилителя мощности (результаты этих расчетов приведены в п. 4.2.1.). Полученный в ходе расчетов коэффициент усиления KУМ позволяет найти мощность на входе усилителя, тождественно равную мощности на выходе входной согласующей цепи СЦ1:

.

Поскольку мы задали контурный КПД согласующих цепей равным ηк СЦ = 0,9, то мощность на входе СЦ1 Pвх СЦ1 равна:

,

что меньше 20 мВт, ограничивающих по заданию входную мощность сверху.





3. Методики расчета каскадов модуля
3.1. Методика расчета РЕЖИМА ТРАНЗИСТОРА
МОЩНОГО СВЧ УСИЛИТЕЛЯ мощности

Рассматриваемая методика может быть использована для расче­та режима мощного транзистора усилителя, работающего на частотах порядка сотен мегагерц, и позволяет получить параметры режима, достаточно близкие к экспериментальным. На значениях частоты 1… 3 ГГц погрешность расчета возрастает из-за использования упро­щенной эквивалентной схемы транзистора и недостаточной точности при определении ее параметров. В диапазоне частот выше 3 ГГц эти недостатки проявляются еще более резко. На режим начинает оказы­вать сильное влияние даже сравнительно небольшой разброс значе­ний индуктивностей выводов и емкостей корпуса, а также многочис­ленные паразитные связи в конструкции транзистора. Эти обстоя­тельства ограничивают верхний частотный предел применимости рас­сматриваемой методики.

В методике расчета используется эквивалентная схема, дополненная некоторыми элементами, су­щественными для диапазона СВЧ.

Параметры эквивалентной схе­мы транзистора зависят от протекающих токов и приложенных напря­жений. Однако обычно считают, что в выбранном режиме транзистора параметры схемы будут постоянными в пределах каждой области рабо­ты: рабочей области (К — замкнут) и области отсечки (К — разомк­нут). Параметры эквивалентной схемы приводятся в справочных дан­ных, а наименования их даны в разделе «Обозна­чения» пособия [1]. Некоторые параметры, которые отсутст­вуют в справочниках, можно оценить по формулам:

Сд=Сэ+Сдиф; Ск=Ска+Скп; ; τк=rб Ска; ;
; ; .

При усреднении Sп ток iк рекомендуется принять равным поло­вине высоты импульса коллекторного тока iк max или амплитуде его первой гармоники, которая в типичных режимах близка к 0,5iк max. Емкость Ск определяют при выбранном напряжении Uк0. На часто­тах  сопротивление r слабо шунтирует емкости и им можно пренебречь. Неравенство  определяет нижнюю час­тотную границу проводимого анализа. При расчете принимают, что в диапазоне СВЧ входной ток мощных транзисторов оказывается близ­ким к гармоническому за счет подавления высших гармоник индуктив­ностью входного электрода. Форма коллекторного напряжения прини­мается гармонической. Поэтому далее будем полагать, что входной ток и коллекторное напряжение не содержат высших гармоник и экви­валентный генератор тока Sп (Uп-U') нагружен на диссипативное сопротив­ление. Расчет производим для граничного режима работы транзис­тора.

Эквивалентная схема усилителя ОЭ для токов и напряжений пер­вой гармоники показана на рис. 3. В схеме ОЭ при диссипативной нагрузке будут отрицательные обратные связи через Lэ и .


 

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.