Меню
Поиск



рефераты скачать Микродисплеи

Микродисплеи

Введение


В последние годы на рынке электронных компонентов все заметнее доля относительно нового их вида - микродисплеев.

До настоящего времени, как видно из таблицы 1, наиболее универсальным устройством отображения информации были электронно-лучевые трубки (ЭЛТ), принципиальные недостатки которых хорошо известны (высокие управляющие напряжения и энергопотребление, низкие массо-габаритные характеристики, наличие вакуумированного обьема и др.) и трудноустранимы. Вряд ли в ближайшей перспективе удастся значительно улучшить контрастность и разрешение ЭЛТ, уменьшить их энергопотребление и вес. Из-за этого в последнее время ведутся интенсивные исследования альтернативных устройств отображения информации плоского типа, работающих на других физических принципах:

·                электролюминесцентных;

·                газоразрядных;

·                светодиодных;

·                жидкокристаллических и др.

Таблица 1. Динамика рынка устройств отображения информации

Тип устройства

отображения информации

Рынок сбыта,

$ млрд., по годам

1999 г.

2005 г.

Электронно-лучевые трубки (ЭЛТ)

23,5

26,8

Активно-матричные ЖК-дисплеи

23,5

нет данных

Пассивные ЖК-дисплеи

3,8

4,1

Плазменные дисплеи

0,8

5,8

Другие плоскопанельные дисплеи

1,4

2,0

Все виды плоскопанельных дисплеев

16,9

34,9

Объем рынка, всего

40,4

61,7

По прогнозам специалистов, суммарный объем их продаж превысит объем продаж ЭЛТ уже в 2005 г.

В последнее время возникла и бурно развивается новая область электронной техники, связанная с микроминиатюрными устройствами отображения информации - микродисплеи. Микродисплеи - это новая фаза в развитии дисплейных технологий, способная как существенно изменить внешний вид существующих устройств, так и создать целый класс новых с расширенными функциональными возможностями типа мобильных телекоммуникационных систем с возможностью отображения полноформатных страниц текста или графики, беспроводных компьютерных интерфейсных систем и др., что до появления микродисплеев было невозможным. Кроме того, может быть решена вечная проблема, существующая в области электронной техники, когда поддается комплексной микроминиатюризации все, кроме дисплеев.

Согласно прогнозам американской фирмы Display Search доля электронной техники на основе микродисплеев, которая оценивается на уровне более 0,5 млрд. в 2000 г., увеличится к началу 2004 г. до 2,3 млрд., т.е. практически в 5 раз. Самым крупным потребителем микродисплеев могут стать производители мобильных телефонов с возможностью их беспроводного подключения к сети Интернет.

К числу других наиболее перспективных применений микродисплеев относят проекционные устройства различного класса и назначения, нашлемные индикаторы типа "Head-Mounted-Display", а также тренажеры и электронные игры с эффектами виртуальной реальности. Кроме этого, уже в самое ближайшее время предполагается переоснащение кинотеатров спутниковыми приемниками и высококачественными цифровыми видеопроекторами, что резко снизит стоимость проката при одновременном улучшении качества и расширении ассортимента фильмов (кинопленка стандартного фильма стоит более 20000 долларов и обеспечивает только 10-кратное повторное качественное воспроизведение).

1 Классификация и области

применения микродисплеев


Микродисплеями (МД) (microdisplays) принято называть микроминиатюрные устройства отображения буквенно-цифровой, графической или телевизионной информации с диагональю от 0,5 до 4,5 см, содержащих от несколько десятков или сотен тысяч до нескольких миллионов элементов отображения (пикселей).

По конструкции и принципу действия МД можно условно разделить на три большие группы (рис. 2):

·        просветные МД, формирующие изображение за счет модуляции проходящего через них света в соответствии с управляющими электрическими сигналами;

·        отражательные МД, формирующие изображения за счет модуляции отраженного от них светового потока;

·        светоизлучающие МД, непосредственно генерирующие видимое глазом изображение.

Понятно, что изображение на МД так мало, что для практического использования оно должно быть увеличено либо с помощью специальной оптики, либо методами проекции изображения.

По методу проецирования изображения микродисплеи делятся на устройства с прямой (фронтальной) и обратной проекцией изображения, а по виду отображаемой информации - на монохромные и цветные, графические и телевизионные.

По способу адресации элементов отображения (пикселей) различают пассивные и активно-матричные микродисплеи. В пассивных дисплеях реализуется так называемое мультиплексное управление (импульсный режим с разделением во времени). В активно-матричных МД последовательно с каждым элементом отображения формируется двух- или трехэлектродный элемент (чаще всего диод или транзистор), выполняющий функции электронного ключа и позволяющий независимую аналоговую или цифровую адресацию каждого элемента отображения (ЭО). Например, при аналоговой адресации с более чем 256 градациями серой шкалы (полутонов) воспроизводится более 16 млн. цветовых оттенков. При 6-битовой информации на один основной цвет и 64 градациях серой шкалы отображается 262144 цвета, а при 8-битовой и 256 градациях - 16777216 цветов.

По разрешающей способности микродисплеи можно разделить на несколько групп (табл.2).

Таблица 2. Классификация дисплеев по разрешающей способности

Формат

изображения

Разрешение

Аспектное отношение

Число ЭО, тыс.

QVGA

320 x 240

4 : 3

76,8

VGA

640 x 480

4 : 3

307,2

SVGA

800 x 600

4: 3

480,0

XGA

1024 x 768

4 : 3

786,4

HDTV (720p)

1280 x 720

16 : 9

921,6

SXGA

1280 x 1024

5 : 4

1310,7

UXGA

1600 x 1200

4 : 3

1920,0

HDTV (1080i,p)

1920 x 1080

16 : 9

2073,6

QXGA

2048 x 1536

4 : 3

3145,7

VXGA

2048 x 2048

1 : 1

4194,3

GXGA/QSXGA

2560 x 2048

5 : 4

5242,9

Photo CD (16 base)

3072 x 2048

3 : 2

6291,5

Photo CD (64 base)

6144 x 4098

3 : 2

25178,1

Хотя существует мнение, что чем выше разрешение дисплея, тем лучше, на самом деле, согласно прогнозам ведущих специалистов, даже в 2003 г. более 50% проекционных устройств будут использовать микродисплеи не выше XGA формата.

В зависимости от архитектуры построения устройств и систем на основе МД и областей их применения можно выделить 2 большие группы, а именно, видеопроекционные устройства и системы группового типа, в которых изображение с МД методами прямой или обратной проекции переносится на экран больших размеров и считывается наблюдателем или группой наблюдателей с достаточно большого расстояния, желательного большего, чем 5-кратная высота экрана (рис. 3а, б). В виртуальных устройствах и системах персонального типа (virtual microdisplays, NTE = Near-to-the-Eye Displays) изображение МД увеличивается оптической системой и проецируется непосредственно на сетчатку глаза наблюдателя. Изображение, формируемое во втором случае, находится от глаза дальше, чем сам объект ("виртуальное" изображение) и отличается от "реального", наблюдаемого на экране монитора или телевизора (рис. 3в).

Как видеопроекционные, так и виртуальные устройства и системы должны строиться с учетом особенностей восприятия изображения человеком, т.е. характеризоваться световыми (фотометрическими) параметрами, а не энергетическими, как это часто практикуется в зарубежных публикациях. Основные световые параметры - световой поток, сила света, светимость, яркость и освещенность - применяются только в видимом диапазоне спектра и учитывают различную чувствительность человеческого глаза как приемника излучения. Как известно, она максимальна в зеленой области спектра при l = 555 нм и падает практически до нуля на границах видимого диапазона при l = 380 и 780 нм. Для точечного источника света, размеры которого значительно меньше расстояния от него до точки наблюдения, световой поток Ф в люменах определяется мощностью излучения в заданном телесном угле W, измеряемом в стерадианах. Сила света I в данном направлении, измеряемая в канделах, равна отношению светового потока к телесному углу. Если источник света излучает равномерно во все стороны, то сила света определится как I = Ф/4p. Для неточечных источников света вводятся такие параметры как светимость и яркость, которые связаны с площадью излучающей поверхности и измеряются соответственно в Лм/м2 и Кд/м2 (в зарубежных публикациях часто используют единицу измерения фут-ламберт fL, 1 fL = 3,4 Кд/м2). Для комфортного наблюдения яркость экрана должна быть в пределах 30:300 Кд/м2 для кинотеатров и офисов.

Для проекционных устройств важно также знать освещенность в заданной точке экрана, которая измеряется в люксах (1 лк = 1 Лм/м2) и определяется как отношение светового потока к площади освещаемой поверхности. Хотя размерность единицы освещенности и светимости одинаковы, физическая сущность этих параметров совершенно различна.

Несмотря на то, что прямых методов измерения величины светового потока на экране не существует, она может быть легко рассчитана из результатов измерения освещенности экрана, например, люксметром, помещенном вместо экрана. Признанный в настоящее время ANSI-стандарт предполагает измерение в 9 различных точках экрана и вычисление средней величины, которая, как правило, оказывается ниже, чем для одной центральной точки. Для наблюдателя важен также контраст изображения, определяемый отношением освещенности белой и черной точки. При контрасте 3:1 считываются цифры и буквы, контраст 10:1 обеспечивает комфортное считывание информации, а 100:1 - не требует дополнительной адаптации человеческого глаза. Как правило, контраст изображения для фронтальных проекторов значительно больше зависит от внешней засветки, чем для проекторов с обратной проекцией.

Глаз человека в условиях комфортного наблюдения способен разрешать детали изображения с угловыми размерами около 1/60 градуса или 0,4 мрад. В таблице 3 приведены основные параметры изображений различного типа, наблюдаемых в нормальных условиях.

Таблица 3. Основные параметры изображений разного типа

Тип изображения

Расстояние до объекта

Размер изображения по горизонтали

Разрешение

Угол/элемент отобр. (мрад)

Страница текста

25 см

20 см

80 линий на см

1,71

ЭЛТ монитор

50 см

25 см

0,26 мм

1,78

Проекционный экран

2,5 м

1,2 м

1024 линий

1,91

Микродисплей

25 см

10 мм

800 лин., 12 мкм

0,16

Из табл. 3 видно, что если для первых трех типов изображений угол разрешения находится в пределах 1,7:1,9 мрад, что вполне приемлемо, то в случае микродисплея изображение не "читается" и должно быть увеличено оптикой, как минимум, в 10 раз. Следует отметить, что улучшить "читаемость" за счет приближения МД к глазу не удается, т.к. минимально возможное фокусное расстояние глаза составляет порядка 25 см. Это означает, что фокальное расстояние линзовой системы 10Х, располагаемой непосредственно вблизи глаза, должно быть не менее 25 мм, а ее диаметр - не менее 20 мм.

Важное значение имеет и поле зрения, т.е. угол наблюдения всего изображения по диагонали, напрямую зависящий от разрешения глаза, умноженного на количество ЭО по диагонали. Так, например, поле зрения для МД QVGA-формата (320 x 240 ЭО) составляет 13°, для МД VGA - (640 x 480 ЭО), SVGA - (800 x 600) и XGA - (1024 x 768) форматов - соответственно 26°, 34° и 43°. Слишком малое значение поля зрения означает недостаточное увеличение изображения, а слишком большое приводит к необходимости постоянного движения и перефокусировки глаза, особенно в условиях бинокулярного наблюдения. Если возможности адаптации глаза ограничены, то часть изображения, особенно по углам, будет не в фокусе, что у большинства наблюдателей вызывает симптомы усталости типа напряжения в глазах (у 7 из 10 испытуемых), потускнения картинки (у 5 испытуемых), появление головной боли (у 3 испытуемых). Кроме того, при долговременном наблюдении могут проявляться психологические эффекты, известные под названием синдрома софита (включающие в себя сонливость, повышенную возбудимость или хроническую усталость), клаустрофобию и др.

Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.