Меню
Поиск



рефераты скачать Логические системы в различных функциональных наборах и их реализация

При этом достаточно четырехразрядного двоичного числа, определяющего значение XYZP, которым в дальнейшем будет кодироваться номер каждого символа. Например, второй символ «В» должен иметь код 0001, первый «И» - 0000 и т.д.

Таблица истинности для выбранных признаков представлена в таблице 2, где ФАЛ - функция алгебры логики, в которых значение 1 принимается для кодов, имеющих значение признака h, равного 1. В общем случае h Ì {0,1}. Следует учесть, что h1àF1,  h3àF3,  h5àF5.


Отображение T:H ´ A à F    

 

 

Табл. 1

 

2.3. Нахождение номеров ФАЛ по карте Карно

 

Следующим этапом является нахождение 10-значных номеров ФАЛ по карте Карно, общий вид которой для 4-ех переменных представлен на рисунке 2.2. Цифры в квадратах являются степенью числа 2 при определении номера ФАЛ, выбранных в данной работе на рисунке 2.2а,б,в



Рис. 2.2 Карта Карно со степенями двойки

2.4. Таблица истинности.

 

 

Табл. истинности для ФАЛ. Табл. 2

Нахождение номера ФАЛ: F1

N(F1) = 20 + 21 + 23 + 25+ 27 + 26 + 29 + 212 +  + 213 + 214 = 29419



Нахождение номера ФАЛ: F3


N(F3) = 21 + 22 + 212 + 28+ 29 + 210 + 211 = 7942


Нахождение номера ФАЛ: F5

N(F5) = 20 + 23 + 25 + 26 + 27 + 29+  210 + 213 + + 214 = 26345

2.5. Представление ФАЛ в совершенной нормальной форме.

 

Представим выбранные признаки в совершенной дизъюнктивной нормальной форме (СДНФ) и совершенной конъюнктивной нормальной форме (СКНФ). Для этого из таблицы истинности ФАЛ (см. табл. 2) выпишем конституэнты 0 и 1.


ФАЛ в СДНФ примет вид:


F1(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)


F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) 


F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)


ФАЛ в СКНФ примет вид:


F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) &  (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) &  (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)


F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) &  (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

 

2.6. Минимизация ФАЛ

 

Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.


       

           Рис 2.2а                    Рис 2.2б                     Рис 2.2в

 Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.


1.   XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ

2.   XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP = YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP

3.   Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP


2.7. Представление ФАЛ в виде куба

 

 








3. Исследование ФАЛ.

3.1. Матрица отношений.

 

Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками  отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.

 

 

Матрица отношений. Табл. 3

 

3.2. Исследование ФАЛ на толерантность.

 

Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.


h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }

h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }

h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }


Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;

k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности

Результаты исследования занесем в таблицу 3.

 

3.3. Исследование ФАЛ на эквивалентность.

 

Определим классы эквивалентности для этого множества А = {Х0, Х1, ....,  Х15 } разобьем на классы эквивалентности, получим 6 классов


М1 = {AC} = {X0,X3,X5,X6 X7,X13,X14}


М2 = {AB} = {X1,X12}


М3 = {B} = {X2,X8,X11}


М4 = { } = {X4,X15}


М5 = {ABC} = {X9}


М6 = {BC} = {X10}


При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости


М1 Ì K1

М2 Ì K1

М3 Ì K2

М5 Ì K1

М6 Ì K2

М1 Ì K3

М2 Ì K2


М5 Ì K2

М6 Ì K3




М5 Ì K3



или

K1 = M1 È M2 È M5

K2 = M2 È M3 È M5 È M6

K3 = M1 È M5 È M6



Результаты исследования занесены в таблицу 3. Результаты исследования на эквивалентность и толерантность необходимы для оптимизации построения логической схемы.


3.4. Матрица эквивалентности и толерантности.

 

Матрицу эквивалентности и толерантности можно представить в виде квадрата, по диагонали которого строятся классы эквивалентности, а затем устраиваются отношения толерантности. Матрица эквивалентности и толерантности представлена в таблице 4.


 

Матрица эквивалентности и толерантности. Таблица 4.

 

3.5. Диаграмма Эйлера.

 

Диаграмма Эйлера дает наглядное представление о том, как распределяются признаки по классам толерантности и эквивалентности. Диаграмма Эйлера для выбранных ФАЛ представлена на рисунке 3.5.

Диаграмма Эйлера. Рис. 3.5

 

3.6. Построение комбинационной схемы.

 

Комбинационная схема автомата распознавания набора признаков H = {h1, h3, h5 } построена на основе результатов исследований в пункте 3.1 и пункте 3.4.


 

Таблица 5

 


Используя таблицу 5, можно записать следующие отношения:


G1 = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZ) Ú (YZP)

G2 = (XYZP) Ú (XYZP)

G3 = (XYZP) Ú (XYZP) Ú (XYZP)

G4 = (XYZP) Ú (XYZP)

G5 = (XYZP)

G6 = (XYZP)

Тогда ФАЛ можно представить в виде:


F1 = G1 Ú G2 Ú G5

F3 = G2 Ú G3 Ú G5 Ú G6

F5 = G1 Ú G5 Ú G6

Эти отношения эквивалентны ФАЛ в СДНФ, полученным в пункте 2.5.


Комбинационная схема строилась в два этапа:

1 этап: - построение комбинационной схемы на элементах и, или, 

           (нестандартных).

2 этап: - замена нестандартных элементов на стандартные и-не

Окончательный вариант комбинационной схемы приведен в приложении 1.


Список использованной литературы

 

1. В.П. Сигорский. «Математический аппарат инженера» - издательство Киев: Техника - 1975 г.


Заключение

 

Проведя анализ на толерантность и эквивалентность, мы построили автомат, распознающий кортеж признаков H = {h1, h3, h5 }, который состоит из 16 - ти логических элементов.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.