|
На этом расчет резисторов первой группы завершен. Все резисторы получились прямыми и неподстраиваемыми. Благодаря этому размеры резисторов минимальны, что позволит располагать их на подложке компактно и с наибольшей степенью интеграции.
Расчет резисторов второй группы.
1. Определяем диапазон , в котором можно вести расчет: 0,02 Rmax < < Rmin Þ 900 < < 10000 Видим, что неравенство выполняется, следовательно эти резисторы выполняются из одного материала. Для того чтобы резисторы были как можно меньше выберем материал с как можно большим удельным поверхностным сопротивлением (). Остановим свой выбор на материале “КЕРМЕТ”. Этот материал обладает следующими характеристиками: Таблица 8. Материал для второй группы резисторов
| ||||||||||
№ |
Наименование |
, Ом/ |
a R , 1/°C |
P0 , мВт/мм2 |
S, %/103 час |
||||||
2 |
Кермет К-50С ЕТО,021,013,ТУ |
5000 |
0,0004 |
10 |
0,5 |
Этот материал обладает хорошими характеристиками, свойственными резистивным материалам, а именно: низким ТКС (aR), низким коэффициентом нестабильности (старения) (S), хорошей адгезией и технологичностью.
2. Вычислим относительную температурную погрешность:
=0,0004(150-20)=0,052
3. Вычислим относительную погрешность старения:
, где
tисп - время испытания за которое определен коэффициент старения S;
tисп = 1000 часов.
4. Вычислим относительную погрешность контактирования:
= 0,01 - 0,03 Þ зададимся =0,01
5. Вычислим относительную погрешность формы:
gкф = gR - - - - = 0,22 - 0,1 - 0,052 - 0,025 -0,01=0,033;
6. Определение вида резистора (подстраиваемый или неподстраиваемый):
gкф > Db/ bmax , где bmax = 2 мм Þ gкф > 0,01 Þ резистор неподстраиваемый.
Предпочтение отдается неподстраиваемому резистору.
7. Вычислим коэффициент формы рассчитываемого резистора:
= 14000/5000 = 2,8;
8. Определение вида резистора (прямой или меандр):
Если коэффициент формы меньше 10, то резистор прямой, а если больше десяти, то резистор изготовляется в форме меандра. Предпочтение отдается прямому резистору. В данном случае резистор изготовляется прямым.
9. Определение ширины резистора по мощности рассеяния:
10. Определение основного размера по заданной точности:
, где Dl=Db=0,02 при условии, что коэффициент формы больше единицы.
11. Выбор основного размера:
Þ b = 0,82 мм
12. Определение длины резистора:
13. Проверка проведенных расчетов:
Ом Þ расчет выполнен правильно !
На этом этапе мы рассчитали первый резистор из второй группы (R2). Расчет остальных резисторов этой группы аналогичен и далее не приводится. Результаты расчета всех резисторов данной группы сведены в таблицу.
Таблица 9. Результаты расчет резисторов второй группы
Резистор
Кф
bmin g , мм
bmin p , мм
b, мм
l, мм
Вид резистора
R2
2,8
0,82
0,0011
0,82
2,30
Прямой, неподстр.
R3
9
0,67
0,052
0,67
6,03
Прямой, неподстр.
R4
7
0,70
0,053
0,70
4,90
Прямой, неподстр.
R5
2,5
0,85
0,0185
0,85
1,03
Прямой, неподстр.
R8
2,5
0,85
0,36
0,85
2,13
Прямой, неподстр.
R11
2
0,91
0,47
0,91
1,82
Прямой, неподстр.
R15
2
0,91
0,00014
0,91
1,82
Прямой, неподстр.
На этом расчет резисторов второй группы завершен. Все резисторы получились прямыми и неподстраиваемыми. Вследствие этого размеры резисторов минимальны, что позволит располагать их на подложке компактно и с наибольшей степенью интеграции.
Расчет резисторов закончен !
Расчет контактных переходов для резисторов первой группы
1. Исходные данные для низкоомных резисторов: , где
Rн - номинальное сопротивление резистора;
- относительная погрешность контактирования;
- удельное поверхностное сопротивление;
bmin - минимальная ширина резистора;
2. Рассчитаем максимально допустимое значение сопротивления контактного перехода:
Ом;
3. Рассчитаем сопротивление контактного перехода:
Ом;
4. Проверка условия:
Rк доп должно быть больше, чем Rк п. Условие соблюдается.
5. Находим минимальную длину контактного перехода:
мм;
6. Находим реальную длину контактного перехода:
Остальные резисторы данной группы удовлетворяют этому условию.
Расчет контактных переходов для резисторов второй группы
1. Исходные данные для высокоомных резисторов: , где
Rн - номинальное сопротивление резистора;
- относительная погрешность контактирования;
- удельное поверхностное сопротивление;
bmin - минимальная ширина резистора;
2. Рассчитаем максимально допустимое значение сопротивления контактного перехода:
Ом;
3. Рассчитаем сопротивление контактного перехода:
Ом;
4. Проверка условия:
Rк доп должно быть больше, чем Rк п. Условие соблюдается.
5. Находим минимальную длину контактного перехода:
мм;
6. Находим реальную длину контактного перехода:
Остальные резисторы данной группы удовлетворяют этому условию.
Расчет геометрических размеров тонкопленочных конденсаторов, выполненных методом свободной маски (МСМ)
1. Исходные данные:
а). конструкторские: , где
Cн - номинальная емкость конденсатора;
gC - относительная погрешность номинальной емкости;
Up- рабочее напряжение на конденсаторе;
T°max C - максимальная рабочая температура МС;
tэкспл - время эксплуатации МС.
б). технологические: , где
Db(Dl) - абсолютная погрешность изготовления;
Dlустан - абсолютная погрешность совмещения трафарета;
- относительная погрешность удельной емкости.
2. Выбор материала диэлектрика:
В качестве материала диэлектрика будем использовать “СТЕКЛО ЭЛЕКТРОВАКУУМНОЕ”. Характеристики этого материала приведены в таблице:
Таблица 10. Материал диэлектрика конденсатора
Материал
С0, пФ/мм2
e
tg d
Eпр, В/мкм
aс, 10-4
S, %/1000ч
Стекло электровакуумное С41-1
НПО.027.600
100 - 300
5 - 6
0,002 -
0,005
200 - 400
2
1,5
3. Определение толщины диэлектрика:
мкм, где
Кз - коэффициент запаса, необходимый для обеспечения надежностных характеристик и равный 2 - 4. Примем Кз = 2.
4. Определение удельной емкости по рабочему напряжению:
5. Определение коэффициента формы конденсатора:
Для большей компактности микросхемы выберем коэффициент формы конденсатора равным двум. Конденсатор такой формы удобнее разместить на подложке, чем квадратный.
Кф = 2;
6. Определение относительной погрешности старения:
, где
tисп - время испытания за которое определен коэффициент старения S;
tисп = 1000 часов.
7. Определение относительной температурной погрешности:
=0,0002(150-20)=0,026
8. Вычисление относительной погрешности:
= 0,23-0,115-0,026-0,075 = 0,014;
9. Определение удельной емкости по относительной погрешности:
;
10. Определение вида конденсатора:
Результаты расчета показали, что конденсатор будет изготавливаться неподстраиваемым. Это наиболее оптимальный вид конденсатора.
11. Выбор удельной емкости:
Удельная емкость выбирается из следующего соотношения:
и удовлетворять диапзону самого материала.
С0 = 300 пФ/мм2
12. Определение площади перекрытия обкладок:
S = Cн/C0 =3800/300 = 12,7 мм2;
13. Определение размеров верхней обкладки:
;
;
14. Определение размеров нижней обкладки:
;
;
15. Определение размеров диэлектрика:
;
;
16. Определение площади, занимаемой конденсатором:
мм2.
На этом расчет конденсатора закончен. Конденсатор получился неподстраиваемым. Вследствие этого его размеры минимальны, что позволит расположить его на подложке компактно и с наибольшей степенью интеграции.
Расчет конденсаторов закончен !
Выбор и обоснование топологии
1. Выбор топологии производится на основе принципиальной электрической схемы данной микросхемы;
2. Выбран вариант технологического процесса - метод свободной маски;
3. Перечень конструкторских и технологических ограничений:
Оборудование имеет шесть позиций:
- низкоомные резисторы и подслой для контактных площадок
- высокоомные резисторы
- нижняя обкладка конденсатора и соединительные проводники
- диэлектрик конденсатора
- верхняя обкладка конденсатора и контактные площадки
- защитный слой;
4. Ограничение перечня элементов в пленочном исполнении;
5. Произведен расчет геометрических размеров элементов;
6. Определение необходимой площади подложки:
, где Кзап=0,5-0,75
Из перечня стандартных размеров выбираем подходящие размеры подложки . Исходя из проведенных расчетов выберем подложку с размерами 12x20 мм.
7. При проведении граф-анализа данной схемы установлено, что все пленочные и навесные элементы расположены в плоскости, и схема их соединений удовлетворяет всем конструкторским и технологическим требованиям.
Граф - анализ электрической принципиальной схемы
Рис. 3. Граф - схема
Топология
Рис. 4. Топология
Обоснование выбора корпуса
В |
ыбор типоразмера корпуса произведен согласно геометрическим размерам подложки. Выбор типоразмера корпуса произведен с таким расчетом, чтобы подложка стандартных размеров с размещенными на ней элементами помещалась в выбранный корпус. Корпус 1221.18-5 ГОСТ 17467-88. Корпус металлостеклянный прямоугольной формы с продольным расположением выводов. Он обладает следующими достоинствами:
à хорошо экранирует плату от внешних наводок;
à изоляция коваровых выводов стеклом обеспечивает наилучшую герметизацию и устойчивость к термоциклированию;
à крепление крышки контактной сваркой обеспечивает хорошую герметизацию и прочность;
à хорошо согласовывается с координатной сеткой.
Технологическая часть
Последовательность технологического процесса
1. Изготовление масок;
2. Подготовка подложек;
3. Формирование тонкопленочной структуры;
4. Подгонка номиналов;
5. Резка пластин на кристаллы;
6. Сборка;
7. Установка навесных элементов;
8. Контроль параметров;
9. Корпусная герметизация;
10. Контроль характеристик;
11. Испытания;
12. Маркировка;
13. Упаковка.
Методы формирования тонкопленочных элементов
О |
сновными методами нанесения тонких пленок в технологии ГИМС являются: термическое испарение в вакууме, катодное, ионно-плазменное и магнетронное распыления.
Термическое испарение в вакууме 10-3 - 10 -4 Па предусматривает нагрев материала до температуры, при которой происходит испарение, направленное движение паров этого материала и его конденсация на поверхности подложки. Рабочая камера вакуумной установки (Рис. 5, а) состоит из металлического или стеклянного колпака 1, установленного на опорной плите 8. Резиновая прокладка 7 обеспечивает вакуум-плотное соединение. Внутри рабочей камеры расположены подложка 4 на подложкодержателе 3, нагреватель подложки 2 и испаритель вещества 6. Заслонка 5 позволяет в нужный момент позволяет прекращать попадание испаряемого вещества на подложку. Степень вакуума в рабочей камере измеряется специальным прибором - вакуумметром.
Рис. 5. Методы осаждения тонких пленок
а) - термическое испарение в вакууме; б) - катодное распыление;
в) - ионно-плазменное распыление;
1 - колпак; 2 - нагреватель подложки; 3 - подложкодержатель;
4 - подложка; 5 - заслонка; 6 - испаритель; 7 - прокладка;
8 - опорная плита; 9 - катод-мишень; 10 - анод; 11 - термокатод
Катодным (ионным) распылением (Рис. 5, б) называют процесс, при котором в диодной системе катод-мишень 9, выполненный из распыляемого материала, оседающие в виде тонкой пленки на подложке 4. Ионизация инертного газа осуществляется электронами, возникающими между катодом-мишенью 9 и анодом 10 при U= 3-5 кВ и давлении аргона 1-10 Па.
При ионно-плазменном распылении (Рис. 5, в) в систему анод 10 - катод-мишень 9 вводят вспомогательный источник электронов (термокатод 11). Перед началом работы рабочая камера 1 откачивается до вакуума 10-4 Па и на термокатод 11 подается ток, достаточный для разогрева его и создания термоэлектронного тока (термоэлектронная эмиссия). После разогрева термокатода 11 между ним и анодом 10 прикладывается U=200 В, а рабочая камера наполняется инертным газом (Ar) до давления 10-1 - 10-2 Па - возникает газовый плазменный разряд. Если подать отрицательный потенциал на катод-мишень 9 (3-5 кВ), то положительные ионы, возникающие вследствие ионизации инертного газа электронами, будут бомбардировать поверхность катода-мишени 9, распылять его, а частицы материала оседать на подложке 4, формируя тонкую пленку.
Определенная конфигурация элементов ИМС получается при использовании специальных масок, представляющих собой моно- или биметаллические пластины с прорезями, соответствующими топологии (форме и расположению) пленочных элементов.
Для формирования сложных ТПЭ большой точности применяют фотолитографию, при которой сплошные пленки материалов ТПЭ наносят на подложку, создают на ее поверхности защитную фоторезистивную маску и вытравливают незащищенные участки пленки. Существует несколько разновидностей этого метода. Например, рпи прямой фотолитографии вначале на диэлектрическую подложку наносят сплошную пленку резистивного материала и создают защитную фоторезистивную маску, черз которую травят резистивный слой. Затем эту маску удаляют и сверху наносят сплошную пленку металла (например, алюминия). После создания второй фоторезистивной маски и травления незащищенного алюминия на поверхности подложки остаются полученные ранее резисторы, а также сформированные проводники и контактные площадки, закрытые фоторезистивной маской.
Удалив ненужную более маску, на поверхность наносят сплошную защитную пленку (например, SiO2) и в третий раз создают фоторезистивную маску, открывая участки защитного покрытия над контактными площадками. Протравив защитное покрытие в этих местах и удалив фоторезистивную маску, получают плату ГИМС с пленочными элементами и открытыми контактными площадками.
Использованная литература
1. Методические указания к выполнению курсового проекта по курсу “Конструирование микросхем и микропроцессоров”, МИЭМ, 1988
2. Романычева Э.Т., Справочник: ”Разработка и оформление конструкторской документации РЭА”, Радио и связь, 1989
Оглавление
Задание на курсовое проектирование ............................................................ 2
Аннотация ........................................................................................................ 4
Введение ........................................................................................................... 5
Электрический расчет принципиальной схемы ............................................. 6
Данные для расчета размеров тонкопленочных элементов .......................... 7
Расчет геометрических размеров резисторов ................................................ 8
Расчет контактных переходов ....................................................................... 13
Расчет геометрических размеров конденсаторов ........................................ 15
Выбор и обоснование топологии ................................................................. 17
Граф - анализ схемы ...................................................................................... 18
Топология ....................................................................................................... 19
Обоснование выбора корпуса ....................................................................... 20
Последовательность технологического процесса ....................................... 20
Методы формирования тонкопленочных элементов .................................. 21
Использованная литература ......................................................................... 23
Оглавление ..................................................................................................... 24
Новости |
Мои настройки |
|
© 2009 Все права защищены.