Меню
Поиск



рефераты скачать Измерение параметров АЦП

Измерение параметров АЦП

Министерство общего и профессионального образования РФ

-------------------------------------------------------------------------------------------------------

Новгородский Государственный Университет

 им. Ярослава Мудрого

 

 

 

кафедра ФТТиМ

 

 

 

 

 

 

 

 

 

 

 

 

Контроль параметров АЦП

Реферат по дисциплине:

Испытания изделий электронной техники.

 

 

 

 

 

 

Выполнил:

Студент группы 4031

_______Галинко В.Ю.

«___»_____________1999



Проверил:

Преподаватель каф. ФТТиМ

_______Крутяков.Л.Н.

«___»_____________1999

 

 

 

 

  

 

 

 

 

Новгород

1999


Содержание




Введение

3

1. Основные структуры ИМС АЦП

4

2. Характеристики ИМС АЦП

7

3. Контроль статических параметров ИМС АЦП

13

4. Контроль динамических параметров ИМС АЦП

19

Список использованных источников

23

 



Введение

Цифро-аналоговые и аналого-цифровые преобразовате­ли АЦП находят .широкое применение в различ­ных областях современной науки и техники. Они являют­ся неотъемлемой составной частью цифровых измери­тельных приборов, систем преобразования и отображе­ния информации, программируемых источников питания, индикаторов на электронно-лучевых трубках, радиоло­кационных систем, установок для контроля элементов и микросхем, а также важными компонентами различных автоматических систем контроля и управления, устройств ввода—вывода информации ЭВМ. На их основе строят преобразователи и генераторы практически любых функ­ций, цифроуправляемые аналоговые регистрирующие устройства, корреляторы, анализаторы спектра и т. д. Велики перспективы использования быстродействующих преобразователей в телеметрии и телевидении. Несом­ненно, серийный выпуск малогабаритных и относительно дешевых АЦП еще более усилит тенденцию про­никновения метода дискретно-непрерывного преобразо­вания в сферу науки и техники. Одним из стимулов раз­вития цифро-аналоговых и аналого-цифровых преобразо­вателей в интегральном исполнении в последнее время является широкое распространение микропроцессоров и методов цифровой обработки данных. В свою очередь потребность в АЦП стимулирует их разработку и производство с новыми, более совершенными характе­ристиками. В настоящее время применяют три вида тех­нологии производства АЦП: модульную, гибрид­ную и полупроводниковую. При этом доля производства полупроводниковых интегральных схем (ИМС ЦАП и ИМС АЦП) в общем объеме их выпуска непрерывно возрастает и в недалеком будущем, по-видимому, в мо­дульном и гибридном исполнениях будут выпускаться лишь сверхточные и сверхбыстродействующие преобра­зователи с достаточно большой рассеиваемой мощно­стью.

В данной главе рассматриваются основные структу­ры, характеристики и методы контроля интегральных микросхем АЦП.


1 Основные структуры ИМС АЦП


Рис. 1. Обобщенная структурная схема АЦП


Обобщенная структурная схема АЦП  (рис.1) представляет собой дискретизирующее устройство ДУ, тактирующее работу кванту­ющего КвУ и кодирующего КдУ устройств. На вход квантующего устройства по­ступает преобразуемый сиг­нал x(t), а с выхода кодиру­ющего устройства снимается дискретный сигнал ДС, кото­рый для АЦП в интеграль­ном исполнении обыччно име­ет форму двоичного параллельного кода. В результате равномерного квантования мгновенное значение xi не­прерывной величины x(t) представляется в виде конеч­ного числа п ступеней квантования Δх:

Xi=nΔx=x ±Δk,

где Δk - погрешность квантования, обусловленная тем, что преобразуемая величина х может содержать нецелое число п ступеней квантования Δх.

Максимально возможная погрешность квантования (погрешность   дискретности) определяется ступенью квантования, т. е.

Δkmax= Δx

Для известного диапазона xmax максимально возмож­ное число дискретных значений преобразуемого сигнала х (включая х==0)

nmax=(xmax/ Δx+1)

При этом, как правило, погрешность квантования не должна превышать общую погрешность преобразования.

Следовательно, если известно значение допустимой отно­сительной погрешности преобразования γmaх, то при опре­делении ступени квантования необходимо учитывать со­отношение

Δx ≤ (γmaх /100)*xmax


Кроме того, следует учитывать, что АЦП обладают определенным порогом чувствительности Хп.ч, т. е. спо­собностью вызывать изменение выходной информации преобразователя при воздействии на его вход наимень­шего значения преобразуемого сигнала. Поэтому значе­ние Δx должно превышать Хп.ч и удовлетворять неравен­ству


Хп.ч < Δx ≤ (γmaх /100)*xmax


Реализацию обобщенной структуры можно осущест­вить различными способами, которые рассмотрены ниже. Независимо от способа построения АЦП всем им прису­ща методическая погрешность, обусловленная погрешно­стью квантования Δx.

В зависимости от области применения АЦП их основ­ные характеристики (точность, разрешающая способ­ность, быстродействие) могут существенно отличаться. При использовании АЦП в измерительных устройствах главную роль играет точность преобразования, а быстро­действие этих устройств ограничено реальной скоростью регистрации результата измерения. При использовании АЦП в качестве устройства ввода измерительной инфор­мации в ЭВМ от него требуется быстродействие в боль­шей степени.

Широкое применение АЦП в различных областях на­уки и техники явилось предпосылкой создания разных структур АЦП, каждая из которых позволяет решить определенные задачи, предъявляемые к АЦП в каждом конкретном случае. Из всего многообразия существую­щих методов аналого-цифрового преобразования в интегральной технологии нашли применение в основном три:

1) метод прямого (параллельного) преобразования;

2) метод последовательного приближения (поразряд­ного уравновешивания);

3) метод интегрирования.

Каждый из этих методов позволяет добиться наилуч­ших параметров (быстродействия, разрешающей способ­ности, помехоустойчивости и т. д.). Потребность в АЦП с оптимальными параметрами или с отдельными экстре­мальными параметрами обусловила появление структур преобразователей, использующих комбинацию перечис­ленных методов. Рассмотрим структурные схемы АЦП, нашедших наибольшее распространение в интегральной технологии.

В АЦП с параллельным преобразованием входной сигнал прикладывается одновременно ко входам всех компараторов. В каждом компараторе он сравнивается с опорным сигналом, значение которого эквивалентно определенной кодовой комбинации. Опорный сигнал сни­мается с узлов резистивного делителя, питаемого от ис­точника опорного напряжения. Число возможных кодо­вых комбинаций (а следовательно, число компараторов) равно 2m—1, где т—число разрядов АЦП. АЦП прямо­го преобразования обладают самым высоким быстродей­ствием среди других типов АЦП, определяемым быстро­действием компараторов и задержками в логическом де­шифраторе. Недостатком их является необходимость в большом количестве компараторов. Так, для 8-разрядно­го АЦП требуется 255 компараторов. Это затрудняет реализацию многоразрядных (свыше 6—8-го разрядов) АЦП в интегральном исполнении. Кроме того, точность преобразования ограничивается точностью и стабильно­стью каждого компаратора и резистивного делителя. Тем не менее на основе данного принципа строят наиболее быстродействующие АЦП со временем преобразования в пределах десятков и даже единиц наносекунд, но огра­ниченной разрядности (не более шести разрядов).

АЦП последовательного приближения имеет несколь­ко меньшее быстродействие, но существенно большую разрядность (разрешающую способность). В нем исполь­зуется только один компаратор, максимальное число срабатываний которого за один цикл измерения не превы­шает числа разрядов преобразователя. Суть такого ме­тода преобразования заключается в последовательном сравнении входного преобразуемого напряжения Us с выходным напряжением образцового ЦАП, изменяю­щимся по закону последовательного приближения до момента наступления их равенства (с погрешностью дискретности). Входной сигнал Ux с помощью аналогового компаратора КН сравни­вается с выходным сигналом образцового ЦАП, который управляется в свою очередь регистром последовательно­го приближения РгПП. При запуске схемы РгПП уста­навливается генератором Г в исходное состояние. При этом на выходе ЦАП формируется напряжение, соответ­ствующее половине диапазона преобразования, что обес­печивается включением его старшего разряда 100 ... 0. Если Us меньше выходного напряжения ЦАП, то стар­ший разряд выключается, включается второй по стар­шинству разряд (на входе ЦАП код 0100...0), что соот­ветствует 'формированию на выходе ЦАП напряжения, равного половине предыду­щего. В случае если Их пре­вышает это напряжение, то дополнительно включается третий разряд (на входе ЦАП код 0110...0), что при­водит к увеличению выходного напряжения ЦАП в 1,5 раза. При этом выходное напряжение ЦАП вновь сравни­вается с напряжением Ux и т. д. Описанная процедура повторяется т раз (где mчисло разрядов АЦП). В итоге на выходе ЦАП формируется напряжение, отли­чающееся от входного преобразуемого напряжения Ux не более чем на единицу младшего разряда ЦАП. Результат преобразования напряжения Ux в его цифровой эквива­лент—параллельный двоичный код Nx—снимается с выхода РгПП. Очевидно, погрешность преобразования и быстродействие такого устройства определяются в основ­ном параметрами ЦАП (разрешающей способностью, ли­нейностью, быстродействием) и компаратора (порогом чувствительности, быстродействием).   Преимуществом рассмотренной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразова­телей сравнительно высокого быстродействия (время 'пре­образования 'порядка нескольких сот наносекунд). На ос­нове метода последовательного приближения реализова­на и серийно выпускается ИМС 12-разрядного АЦП К572ПВ1 с временем преобразования 100 мкс.

Наиболее простыми по структуре среди интегрирую­щих преобразователей являются АЦП с преобразовани­ем напряжения в частоту, построенные на базе интегри­рующего усилителя и аналогового компаратора. Погреш­ность их преобразования определяется нестабильностью порога срабатывания компаратора и постоянной времени интегратора. Более высокими метрологическими харак­теристиками обладают АЦП, реализованные по принци­пу двойного интегрирования (например, ИМС, 11-раз­рядного АЦП К572ПВ2), поскольку при этом практиче­ски удается исключить влияние на погрешность преобра­зования нестабильности порога срабатывания компара­тора и постоянной времени интегратора.

Анализ описанных методов преобразования и струк­турных схем АЦП позволяет сделать вывод, что наи­большим быстродействием обладают АЦП прямого пре­образования, однако их разрядность невысока. АЦП поразрядного уравновешивания, обладая средним быст­родействием, дают возможность получить достаточно высокую разрешающую способность. Но помехозащи­щенность тех и других преобразователей невысока. АЦП интегрирующего типа, обладая наименьшим быстродей­ствием, обеспечивают наибольшую помехозащищенность и точность преобразования.


2. Характеристики ИМС АЦП

Основными параметрами,  характеризующими  ИМС АЦП, являются разрешающая способность, нели­нейность, коэффициент преобразования, погрешность полной шкалы, смещение нуля, абсолютная погрешность, дифференциальная нелинейность, монотонность, время преобразования.

Разрешающая способность определяется числом дис­кретных значений выходного сигнала преобразователя, составляющих его предел преобразования. Чем больше число дискретных значений, тем выше разрешающая способность преобразователя. Двоичный m-разрядный преобразователь имеет 2m дискретных значений, а его разрешающая способность равна 1/2m. В преобразовате­лях различают наименьший и наибольший значащие раз­ряды. В двоичной системе кодирования наименьший зна­чащий разряд — это разряд, имеющий наименьший вес. Вес младшего разряда определяет разрешающую способ­ность. Наибольший значащий разряд соответствует наибольшему весу. В двоичной системе кодирования наи­больший значащий разряд имеет вес 1/2 номинального значения максимально возможного выходного сигнала при всех включенных разрядах (полной шкалы преобра­зования).

 






Разрешающая способность характеризует как ЦАП, так и АЦП и может выражаться либо в процентах, либо в долях полной шкалы. Например, 12-разрядный АЦП имеет разрешающую способность 1/4096, или 0,0245% от значения полной шкалы. Преобразователь с полной шка­лой напряжения 10 В может обеспечивать изменение выходного кода на единицу при изменении входного напря­жения на 2,45 мВ. Аналогично 12-разрядный ЦАП дает изменение выходного напряжения на 0,0245% от значе­ния полной 'шкалы при изменении двоичного входного кода на один двоичный разряд. Разрешающая способность является скорее расчетным параметром, а не тех­нической характеристикой, поскольку она не определяет ни точность, ни линейность преобразователя.

Нелинейность dн, или интегральная нелинейность, ха­рактеризуется отклонением dн(х) реальной характерис­тики преобразователя fp(x) от прямой. При этом значе­ние dн(х) зависит от метода линеаризации. Рис. 2,а иллюстрирует способ линеаризации, когда линеаризую­щая прямая проходит через крайние точки реальной ха­рактеристики ЦАП. При этом наблюдается максималь­ная погрешность линейности (нелинейность dн). На рис. 2,б прямая проводится таким образом, что макси­мальное отклонение fp(x) от прямой получается в два раза меньше. Однако для этого необходимо знать харак­тер реальной характеристики ЦАП, что очень 'сложно обеспечить в серийном производстве. Поэтому, как пра­вило, погрешность линейности определяют при прохож­дении линеаризующей прямой через крайние точки ха­рактеристики fp (х). Для определения нелинейности (ко­торая обычно выражается в процентах от полной шкалы или в долях единицы младшего разряда) необходимо знать аналитическую зависимость между выходным ана­логовым сигналом ЦАП и его цифровым входом. Для ЦАП с двоичными т-разрядами аналоговый выход Uвых зависит от входного двоичного кода в идеальном случае (в отсутствие погрешностей преобразования) таким об­разом:

Uвых = Uоп(B12-1+B22-2+…+ Bm2-m),                                      (1)

где B1, B2, ..., Bm—коэффициенты двоичного числа, име­ющие значение единицы или нуля (что соответствует включению или выключению разряда); Uon—опорное напряжение ЦАП. Так как

Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.