|
При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается за , а количество - .
Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество - . Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б — на 25%, а товара В — на 50%. При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и , могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода. Агрегатная формула такого общего индекса цен имеет следующий вид: (1) Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше. Применяем формулу для расчёта агрегатного индекса цен по данным табл. 1 числитель индексного отношения =25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб. знаменатель индексного отношения = 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб. Полученные значения подставляем в формулу I: или 113,9% Применение формулы (1) показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%. При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде . При этом умножение на индексируемые величины в числителе индексного отношения образует значение , т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода. Агрегатная формула такого общего индекса имеет вид: (2) Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса. Применяем формулу для расчёта агрегатного индекса цен по данным табл. 1: числитель индексного отношения = 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб. знаменатель индексного отношения =20 * 7500 + 30 * 2000 + 15 *1000 = 225 000руб. Полученные значения подставляем в формулу (2): или 114,4% Применение формулы (2) показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%. Таким образом, выполненные по формулам (1) и (2) расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен. Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде. Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы. При определении агрегатного индекса физического объёма товарной массы в качестве соизмерителей индексируемых величин и могут применяться неизменные цены базисного периода . При умножении на индексируемые величины в числителе индексного отношения образуется значение , т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе — сумма стоимости товарной массы базисного периода в ценах того же базисного периода. Агрегатная формула такого общего индекса имеет следующий вид: (3) Поскольку, в числителе формулы (3) содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе — сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах. Используем формулу (3) для расчёта агрегатного индекса физического объёма реализации товаров по данным табл. 1 : числитель индексного отношения = 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб., знаменатель индексного отношения = 7 500 * 20 + 2000 * 30 + 1 000 *15 = 225 000 руб. Полученные значения подставляем в формулу (3): или 127,8 % Применение формулы (3) показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%. Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода . Агрегатная формула общего индекса будет иметь вид: (4) числитель индексного отношения =9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб. знаменатель индексного отношения =7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб. Полученные значения подставляем в формулу (4): или 127,2 % Применение формулы (4) показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%. Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде - числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (- знаменатель). Индексы с постоянными и переменными весами. При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода. Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом. Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала с I, III — со II и IV — с III кварталом. В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие. Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами — соизмерителями. Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный. 2.2. Средневзвешенные индексы
Помимо агрегатных индексов в статистике применяются средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Средний индекс - это индекс, вычисленный как средняя величина из индивидуальных индексов. Он должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая. Среднеарифметический индекс тождествен агрегатному, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного по формуле средней арифметической, будет равна агрегатному индексу. Среднеарифметический индекс физического объема продукции вычисляется по формуле.
Среднеарифметический индекс трудоемкости производства продукции определяется следующим образом: Поскольку , то формула этого индекса может быть преобразована в агрегатный индекс трудоемкости продукции. Весами являются общие затраты времени на производство продукции или численность работников в базисном периоде. В статистике широко известен и среднеарифметический индекс производительности труда. Он носит название индекса Струмилина и определяется следующим образом: Индекс показывает, во сколько раз возросла (уменьшилась) производительность труда или сколько процентов составил рост (снижение) производительности труда в среднем по всем единицам исследуемой совокупности. Среднеарифметические индексы чаще всего применяются на практике для расчета сводных индексов количественных показателей. Среднегармонический индекс тождествен агрегатному, если индивидуальные индексы будут взвешены с помощью слагаемых числителя агрегатного индекса. Например, индекс себестоимости можно исчислить так: Таким образом, весами при определении среднегармонического индекса себестоимости являются издержки производства текущего периода, а при расчете индекса цен стоимость продукции этого периода.
3. БАЗИСНЫЕ И ЦЕПНЫЕ ИНДЕКСЫ
Цепные индексы: Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период. Базисные индексы: Частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период. Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот. Для индексов с переменными весами такое правило не сохраняется. С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами - индексы цен, себестоимости, производительности труда. Индекс дефлятора используется для перевода значений стоимостных показателей за отчетный период в стоимостные измерители базисного периода. Для построения индекса дефлятора можно использовать индексы с переменными весами. Индексы постоянного состава, переменного состава и структурных сдвигов. В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов. Индекс постоянного (фиксированного) состава не учитывает изменение объема продажи продукции на различных рынках в текущем и базисном периодах. Индекс переменного состава используется для характеристики изменения средней цены в текущем и базисном периодах. Территориальные индексы. В статистике существует необходимость сопоставления уровней экономических явлений в пространстве. Для расчета значений используются территориальные индексы. Для их исчисления соответствующие показатели по всем видам продукции умножаются на количество продукции, произведенной во всей области. 4. ИНДЕКС ИННОВАЦИОННОЙ СПОСОБНОСТИ ЭКОНОМИКИ (GCI)
Официальная статистика, как российская, так и зарубежная, представляет не очень много данных о результатах научных исследований. Так, Центр исследований и статистики науки (ЦИСН) публикует только сопоставимые данные о патентной деятельности в России и странах ОЭСР. Коэффициент активности изобретательской деятельности (рассчитывается по количеству патентных заявок в расчете на 10 тыс. жителей) составил в РФ в 2003 г. 1,1, что значительно ниже, чем в странах-лидерах (Япония - 29,1, Корея - 9,7, Германия - 6,2, США - 5,7, Финляндия - 5,1, Швеция - 5,3), но ненамного хуже, чем в таких странах, как Франция, Нидерланды, Канада. Сравнительно низок в России и показатель соотношения поданных за рубежом и национальных заявок. Современная международная статистика, располагающая большими массивами данных о научно-техническом развитии, активно разрабатывает и постоянно совершенствует методы расчета разнообразных индексов и рейтингов конкурентоспособности, отражающих потенциал и сравнительные преимущества той или иной страны. Разработчики этих рейтингов исходят из того, что основной вектор современной глобальной конкуренции лежит в области динамично меняющихся преимуществ, основанных на научно-технических достижениях и инновациях. Новые технологии и обеспечиваемый ими рост производительности и эффективности позволяют добиваться главного условия национальной и отраслевой конкурентоспособности: производства товаров и услуг, которые соответствуют требованиям мировых рынков, на основе высокой производительности труда и при одновременном повышении реальных доходов населения. Так, в докладе Всемирного экономического форума (ВЭФ) в 2000 г. в дополнение к публиковавшимся ранее рейтингам по позиции "технология" введен новый индекс конкурентоспособного роста (Growth Competitiveness Index, GCI), который стали называть индексом инновационной способности экономики. Он отражает способность национальной экономики к устойчивому экономическому росту в среднесрочной перспективе (ближайшие пять лет), принимая во внимание текущий уровень экономического развития. В основе построения индекса GCI - выделение группы стран-лидеров по ключевому, с точки зрения авторов, показателю - количеству патентов, зарегистрированных в стране в расчете на 10 тыс. жителей. Кроме того, в модель включены объемы инновационных инвестиций и их эффективность, а также использование информационных технологий в повседневной жизни граждан (количество мобильных телефонов и компьютеров на душу населения в стране, активность пользователей Интернета и т.д.). Особо учитываются институциональные и макроэкономические условия, содействующие или препятствующие инновационной деятельности. |
Новости |
Мои настройки |
|
© 2009 Все права защищены.